Difference between revisions of "Construction of a Tabletop Michelson Interferometer"

From UConn PAN
Jump to navigation Jump to search
Line 37: Line 37:
 
The last term vanishes if G<sub>1</sub>(x,x')and A(x) fall off sufficiently fast at <math>t\rightarrow\infin</math>. They do.  So:<br>
 
The last term vanishes if G<sub>1</sub>(x,x')and A(x) fall off sufficiently fast at <math>t\rightarrow\infin</math>. They do.  So:<br>
  
<math>\int \nabla \cdot \mathbf{F} d^4x=A(x')</math><br>
+
<math>\int \nabla \cdot \mathbf{F} d^4x=A(x')</math><br><br><br>
Now invoke the divergence theorem on the half space <math>z>0 \quad</math>:<br><br>
+
Now invoke the divergence theorem on the half space <math>z>0 \quad</math>:<br><br><br>
 
<math>A(x')=-\int d^2x\int cdt\left[A(x)\frac{\part}{\part t}G_1(x,x')-G_1(x,x')\frac{\part}{\part z}A(x)\right]</math>, where the last term is zero by the constriction of<math>G_1(z=0) \quad</math><br><br>
 
<math>A(x')=-\int d^2x\int cdt\left[A(x)\frac{\part}{\part t}G_1(x,x')-G_1(x,x')\frac{\part}{\part z}A(x)\right]</math>, where the last term is zero by the constriction of<math>G_1(z=0) \quad</math><br><br>
<math>A(x')=-c\int dt\int d^2xA(x)\frac{\part}{\part z}G_1(x,x')</math><br><br>
+
<math>A(x')=-c\int dt\int d^2xA(x)\frac{\part}{\part z}G_1(x,x')</math><br><br><br>
To do the t integral, I need to bring out the z derivative.  To do this, I first turn it into a z' derivative, using the relation: <br>
+
To do the t integral, I need to bring out the z derivative.  To do this, I first turn it into a z' derivative, using the relation: <br><br><br>
 
<math>G_1(x,x')=\frac{-1}{4\pi}\left(\frac{\delta(|\mathbf{x}-\mathbf{x}'|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'|}-\frac{\delta(|\mathbf{x}-\mathbf{x}''|-c(t-t'))}{|\mathbf{x}-\mathbf{x}''|}\right)</math>, where <math>\mathbf{x}''=\mathbf{x}'-2z'\hat{e_3}</math><br><br>
 
<math>G_1(x,x')=\frac{-1}{4\pi}\left(\frac{\delta(|\mathbf{x}-\mathbf{x}'|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'|}-\frac{\delta(|\mathbf{x}-\mathbf{x}''|-c(t-t'))}{|\mathbf{x}-\mathbf{x}''|}\right)</math>, where <math>\mathbf{x}''=\mathbf{x}'-2z'\hat{e_3}</math><br><br>
 +
<math>\frac{\part}{\part z}G_1(x,x')=\frac{1}{4\pi}\left(\frac{\part}{\part z}\left(\frac{\delta(|\mathbf{x}-\mathbf{x}'|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'|}-\frac{\delta(|\mathbf{x}-\mathbf{x}''|-c(t-t'))}{|\mathbf{x}-\mathbf{x}''|}\right)\right)</math>,
 +
&there4; <math>A(x')=\frac{-1}{4\pi}\frac{\part}{\part z'}\int_{z=0} d^2x\left(2\frac{A(\mathbf{x},t'-\frac{\mathbf{x}-\mathbf{x}'}{c}}{\mathbf{x}-\mathbf{x}'}\right)</math?
 +
 +
</math>

Revision as of 18:26, 2 July 2009

Determining Angle for First Diffraction Minimum

We start off with Maxwell's Equation in the Lorentz gauge:

Where:

Lorentz Gauge:

Introduce Green's function at (x=t) from some impulse source at x'=(x',t')



Let

Then

In free space, translational symmetry implies:






, where
But,



Chose the "retarded" solution, such that the function is zero unless t>t'










But the term



Now to get the G1(x,x') in the half-space with z>0 with the boundary condition G1 at x3=z=0 we take the difference:



Now use Green's theorem:

Let



But

, let



The last term vanishes if G1(x,x')and A(x) fall off sufficiently fast at . They do. So:




Now invoke the divergence theorem on the half space :


, where the last term is zero by the constriction of




To do the t integral, I need to bring out the z derivative. To do this, I first turn it into a z' derivative, using the relation:


, where

, ∴