Difference between revisions of "Construction of a Tabletop Michelson Interferometer"
| Line 37: | Line 37: | ||
Let <math>\mathbf{F}=A(x)\mathbf{\nabla}G_1(x,x')-G_1(x,x')\mathbf{\nabla}A(x)</math><br><br> | Let <math>\mathbf{F}=A(x)\mathbf{\nabla}G_1(x,x')-G_1(x,x')\mathbf{\nabla}A(x)</math><br><br> | ||
<math>\int \mathbf{\nabla} \cdot \mathbf{F}d^4x= \int cdt \int d^3x[\mathbf{\nabla}A \cdot \mathbf{\nabla}G+A\nabla^2G_1-\mathbf{\nabla}G \cdot \mathbf{\nabla}A -G_1\nabla^2A]</math><br><br> | <math>\int \mathbf{\nabla} \cdot \mathbf{F}d^4x= \int cdt \int d^3x[\mathbf{\nabla}A \cdot \mathbf{\nabla}G+A\nabla^2G_1-\mathbf{\nabla}G \cdot \mathbf{\nabla}A -G_1\nabla^2A]</math><br><br> | ||
| − | But <math>\nabla^2G_1(x,x')=\delta^4(x-x')+\frac{1}{c^2}\frac{\part^2}{\part t^2} | + | But <math>\nabla^2G_1(x,x')=\delta^4(x-x')+\frac{1}{c^2}\frac{\part^2}{\part t^2}G_1(x,x')</math><br><br> |
| − | + | <math>\nabla^2A(x)=\mu j(x)+\frac{1}{c^2}\frac{\part^2}{\part t^2}A(x)</math>, let <math>j(x)=0 \quad</math><br><br> | |
| + | <math>\int \nabla \cdot \mathbf{F} d^4x=A(x')+\frac{1}{c^2}\int d^4x\left[A\frac{\part^2}{\part t^2}G_1 - G_1\frac{\part^2}{\part t^2}A\right]</math><br><br> | ||
| + | The last term vanishes if G<sub>1</sub>(x,x')and A(x) fall off sufficiently fast at t | ||
Revision as of 17:55, 2 July 2009
Determining Angle for First Diffraction Minimum
We start off with Maxwell's Equation in the Lorentz gauge: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \square^2A^\mu(\mathbf{x},t) = \square^2A^\mu (x)=(-\mu_1 j^\mu (x))}
Where: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j^\mu = (\mathbf{j},c\rho), \part_\mu= (\mathbf{\nabla}, \frac{1}{c} \frac{\part}{\part t})}
Lorentz Gauge: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A^\mu = 0 \rArr \mathbf{\nabla} \cdot \mathbf{A}+\frac{1}{c^2} \frac{\part\Phi}{\part t}=0}
Introduce Green's function at (x=t) from some impulse source at x'=(x',t')
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \square^2_xG(x,x')=\delta^4(x-x')}
Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{G} (q) = \frac{1}{(2\pi)^2} \int d^4x e^{iqx} G(x,0)}
Then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G(q)=\frac{1}{(2\pi)^2} \int d^4qe^{iqx} \tilde{G}(x,0)}
In free space, translational symmetry implies:
∴
, where
But,
∴
Chose the "retarded" solution, such that the function is zero unless t>t'
But the term
∴
Now to get the G1(x,x') in the half-space with z>0 with the boundary condition G1 at x3=z=0 we take the difference:
Now use Green's theorem:
Let
But Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nabla^2G_1(x,x')=\delta^4(x-x')+\frac{1}{c^2}\frac{\part^2}{\part t^2}G_1(x,x')}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nabla^2A(x)=\mu j(x)+\frac{1}{c^2}\frac{\part^2}{\part t^2}A(x)}
, let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j(x)=0 \quad}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \nabla \cdot \mathbf{F} d^4x=A(x')+\frac{1}{c^2}\int d^4x\left[A\frac{\part^2}{\part t^2}G_1 - G_1\frac{\part^2}{\part t^2}A\right]}
The last term vanishes if G1(x,x')and A(x) fall off sufficiently fast at t