|
|
| Line 35: |
Line 35: |
| | <math>G_1(x,x')=\frac{-1}{4\pi}\left(\frac{\delta(|\mathbf{x}-\mathbf{x}'|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'|}-\frac{\delta(|\mathbf{x}-\mathbf{x}'-2z\hat{e_3}|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'-2z\hat{e_3}|}\right)</math><br><br> | | <math>G_1(x,x')=\frac{-1}{4\pi}\left(\frac{\delta(|\mathbf{x}-\mathbf{x}'|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'|}-\frac{\delta(|\mathbf{x}-\mathbf{x}'-2z\hat{e_3}|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'-2z\hat{e_3}|}\right)</math><br><br> |
| | Now use Green's theorem:<br> | | Now use Green's theorem:<br> |
| − | Let<math>\mathbf{F}=A(x)\mathbf{\nabla}G_1(x,x')-G_1(x,x')\mathbf{\nabla}A(x) | + | Let <math>\mathbf{F}=A(x)\mathbf{\nabla}G_1(x,x')-G_1(x,x')\mathbf{\nabla}A(x)</math><br><br> |
| − | | + | <math>\int \mathbf{\nabla} \cdot \mathbf{F}d^4x= \int cdt \int d^3x[\mathbf{\nabla}A \cdot \mathbf{\nabla}G+A\nabla^2G_1-\mathbf{\nabla}G \cdot \mathbf{\nabla}A -G_1\nabla^2A]</math><br><br> |
| − | </math> | + | But <math>\nabla^2G_1(x,x')=\delta^4(x-x')+\frac{1}{c^2}\frac{\part^2}{\part t^2} |
| | + | G_1(x,x')</math><br><br> |
Revision as of 17:48, 2 July 2009
Determining Angle for First Diffraction Minimum
We start off with Maxwell's Equation in the Lorentz gauge:
Where:
Lorentz Gauge:
Introduce Green's function at (x=t) from some impulse source at x'=(x',t')
Let
Then
In free space, translational symmetry implies:
∴

, where 
But, 
∴

Chose the "retarded" solution, such that the function is zero unless t>t'




![{\displaystyle ={\frac {1}{(2\pi )^{2}}}{\frac {2}{|\mathbf {x} -\mathbf {x} '|}}{\frac {2\pi }{4}}\left[2\delta (|\mathbf {x} -\mathbf {x} '|+c(t-t'))-2\delta (|\mathbf {x} -\mathbf {x} '|-c(t-t'))\right]\Theta }](https://wikimedia.org/api/rest_v1/media/math/render/svg/49a5589bd5af5cc12be1c4a9741ef26549f7b6c1)
But the term 
∴
Now to get the G1(x,x') in the half-space with z>0 with the boundary condition G1 at x3=z=0 we take the difference:

Now use Green's theorem:
Let 
![{\displaystyle \int \mathbf {\nabla } \cdot \mathbf {F} d^{4}x=\int cdt\int d^{3}x[\mathbf {\nabla } A\cdot \mathbf {\nabla } G+A\nabla ^{2}G_{1}-\mathbf {\nabla } G\cdot \mathbf {\nabla } A-G_{1}\nabla ^{2}A]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f5fe0f18d836935d1cc0d1e9a8b3ce7268539426)
But 