Difference between revisions of "Construction of a Tabletop Michelson Interferometer"
Jump to navigation
Jump to search
| Line 22: | Line 22: | ||
<math>\square^2_xG(x,x')=\frac{1}{(2\pi)^2}\int d^4qe^{-iq(x-x')}(-k^2+\frac{\omega^2}{c^2})</math>, where <math>q=(\mathbf{k},\frac{\omega}{c}) \quad</math><br> | <math>\square^2_xG(x,x')=\frac{1}{(2\pi)^2}\int d^4qe^{-iq(x-x')}(-k^2+\frac{\omega^2}{c^2})</math>, where <math>q=(\mathbf{k},\frac{\omega}{c}) \quad</math><br> | ||
But, <math>\square^2_xG(x,x')=\delta^4(x-x')=\frac{1}{(2\pi)^4}\int d^4q e^{-iq(x-x')}</math><br> | But, <math>\square^2_xG(x,x')=\delta^4(x-x')=\frac{1}{(2\pi)^4}\int d^4q e^{-iq(x-x')}</math><br> | ||
| − | &there4<math>\tilde{G}(q)=\frac{(2\pi)^2}{(2\pi)^4}\frac{1}{-q^2}= \frac{-1}{(2\pi)^2q^2}</math><br> | + | ∴<math>\tilde{G}(q)=\frac{(2\pi)^2}{(2\pi)^4}\frac{1}{-q^2}= \frac{-1}{(2\pi)^2q^2}</math><br> |
| + | <math>G(x,x')=\frac{-1}{(2\pi)^4} \int d^4qe^{-iq(x-x')} \frac{1}{(k+\frac{\omega}{c})(k-\frac{\omega}{c})}</math><br> | ||
| + | Chose the "retarded" solution, such that the function is zero unless t>t'<br> | ||
| + | <math>G(x,x')=\frac{1}{(2\pi)^4}\int d^3ke^{-i\mathbf{k}(x-x')}\int d(\frac{\omega}{c}) \frac{e^{i\omega(t-t')}}{(\frac{\omega}{c}-k)(\frac{\omega}{c}+k)}\Theta</math><br> | ||
Revision as of 15:53, 2 July 2009
Determining Angle for First Diffraction Minimum
We start off with Maxwell's Equation in the Lorentz gauge:
Where:
Lorentz Gauge:
Introduce Green's function at (x=t) from some impulse source at x'=(x',t')
Let
Then
In free space, translational symmetry implies:
∴
, where
But,
∴
Chose the "retarded" solution, such that the function is zero unless t>t'