|
|
| Line 4: |
Line 4: |
| | | | |
| | Let's begin with a general amplitude for the two-body decay of a state with angular momentum quantum numbers ''J'',''m''. Specifically, we want to know the amplitude of this state having daughter 1 with trajectory <math>\Omega=(\phi,\theta)</math>. | | Let's begin with a general amplitude for the two-body decay of a state with angular momentum quantum numbers ''J'',''m''. Specifically, we want to know the amplitude of this state having daughter 1 with trajectory <math>\Omega=(\phi,\theta)</math>. |
| − | We can also describe the angular momentum between the daughters as being ''L'' and spin sum as ''s''. Alternatively, we will label the daughters as having helicities of <math>\lambda_1</math> and <math>\lambda_2</math> or direction of decay (specified by daughter 1) of | + | We can also describe the angular momentum between the daughters as being ''L'' and spin sum as ''s''. Alternatively, we will label the daughters as having helicities of <math>\lambda_1</math> and <math>\lambda_2</math> - projections on the direction of decay (specified by daughter 1) of |
| | | | |
| | <table> | | <table> |
| Line 47: |
Line 47: |
| | | | |
| | </table> | | </table> |
| − |
| |
| | | | |
| | === Isospin Projections === | | === Isospin Projections === |
Revision as of 16:12, 1 August 2011
General Relations
Angular Distribution of Two-Body Decay
Let's begin with a general amplitude for the two-body decay of a state with angular momentum quantum numbers J,m. Specifically, we want to know the amplitude of this state having daughter 1 with trajectory
.
We can also describe the angular momentum between the daughters as being L and spin sum as s. Alternatively, we will label the daughters as having helicities of
and
- projections on the direction of decay (specified by daughter 1) of
 |
simple insertion of complete sets of states for recoupling
|
![{\displaystyle =\sum _{L,S}\left[{\sqrt {\frac {2J+1}{4\pi }}}D_{m\lambda }^{J*}(\Omega ,0)\right]\left[{\sqrt {\frac {2L+1}{2J+1}}}\left({\begin{array}{cc|c}L&S&J\\0&\lambda &\lambda \end{array}}\right)\left({\begin{array}{cc|c}S_{1}&S_{2}&S\\\lambda _{1}&-\lambda _{2}&\lambda \end{array}}\right)\right]a_{LS}^{J}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a93b86e837aee85c12249ab0f791a8c2693e53e6) |
Substitution of each bra-ket with their respective formulae.
Note that in the event of one daughter being spin-less, the second
Clebsch-Gordan coefficient is 1
|
Isospin Projections
One must also take into account the various ways isospin of daughters can add up to the isospin quantum numbers of the parent, requiring a term:
where a=1 and b=2, referring to the daughter number. Because an even-symmetric angular wave function (i.e. L=0,2...) imply that 180 degree rotation is equivalent to reversal of daughter identities, a,b becoming b,a on must write down the symmetrized expression:
Application