|
|
| Line 1: |
Line 1: |
| − | = NEW =
| |
| | == General Relations == | | == General Relations == |
| | | | |
| Line 137: |
Line 136: |
| | \langle \Omega_\rho 0 \lambda_\rho | U | J_\rho , m_\rho=\lambda_\rho \rangle C_\rho(L_\rho) v^{L_\rho} | | \langle \Omega_\rho 0 \lambda_\rho | U | J_\rho , m_\rho=\lambda_\rho \rangle C_\rho(L_\rho) v^{L_\rho} |
| | </math> | | </math> |
| − |
| |
| − | = OLD =
| |
| − |
| |
| − | <table>
| |
| − | <tr>
| |
| − | <td><math>
| |
| − | A_{}^{J_X L_X P_X}=
| |
| − | </math></td>
| |
| − | <td>
| |
| − | defining an amplitude...
| |
| − | </td>
| |
| − | </tr>
| |
| − | <tr>
| |
| − | <td><math>
| |
| − | \sum\limits_{m_X=-L_X}^{L_X}
| |
| − | \sum\limits_{m_{b1}=-J_{b_1}}^{J_{b_1}}
| |
| − | \sum\limits_{m_\omega=-J_\omega}^{J_\omega}
| |
| − | D_{m_X m_{b_1}}^{L_X *}(\theta_X,\phi_X,0)
| |
| − | D_{m_{b_1} m_\omega}^{J_{b_1}*}(\theta_{b_1},\phi_{b_1},0)
| |
| − | </math></td>
| |
| − | <td>
| |
| − | angular distributions two-body X and <math>b_1 (J_{b_1}^{PC}=1^{+-})</math> decays
| |
| − | </td>
| |
| − | </tr>
| |
| − | <tr>
| |
| − | <td><math>
| |
| − | \left[
| |
| − | P_X(-)^{J_X+1+\epsilon} e^{2i\alpha}
| |
| − | \left(\begin{array}{cc|c}
| |
| − | J_{b_1} & L_X & J_X \\
| |
| − | m_{b_1} & m_X & -1
| |
| − | \end{array}\right)
| |
| − | +
| |
| − | \left(\begin{array}{cc|c}
| |
| − | J_{b_1} & L_X & J_X \\
| |
| − | m_{b_1} & m_X & +1
| |
| − | \end{array}\right)
| |
| − | \right]
| |
| − | </math></td>
| |
| − | <td>
| |
| − | resonance helicity sum: ε=0 (1) for x (y) polarization; <math>P_X</math> is the parity of the resonance
| |
| − | </td>
| |
| − | </tr>
| |
| − | <tr>
| |
| − | <td><math>
| |
| − | \left(\frac{1+(-)^\epsilon \eta}{4}\right)
| |
| − | </math></td>
| |
| − | <td>
| |
| − | polarization term: η is the polarization fraction
| |
| − | </td>
| |
| − | </tr>
| |
| − | <tr>
| |
| − | <td><math>
| |
| − | k^{L_X} q^{L_{b_1}}
| |
| − | </math></td>
| |
| − | <td>
| |
| − | k, q are breakup momenta for the resonance and isobar, respectively
| |
| − | </td>
| |
| − | </tr>
| |
| − | <tr>
| |
| − | <td><math>
| |
| − | \left(\begin{array}{cc|c}
| |
| − | I_{b_1} & I_\pi & I_X \\
| |
| − | I_{zb_1^+} & I_{z\pi^-} & I_{zb_1^+}+I_{z\pi^-}
| |
| − | \end{array}\right)
| |
| − | </math></td>
| |
| − | <td>
| |
| − | Clebsch-Gordan coefficients for isospin sum <math>b_1 \oplus \pi^- \rightarrow X</math>
| |
| − | </td>
| |
| − | </tr>
| |
| − | <tr>
| |
| − | <td><math>
| |
| − | \sum\limits_{L_{b_1}=0}^{2}
| |
| − | \sum\limits_{m_{L_{b_1}}=-L_{b_1}}^{L_{b_1}}
| |
| − | \sum\limits_{L_{\pi^+\pi^-},L_\omega=1,3}
| |
| − | \sum\limits_{m_{\pi^+\pi^-}=-L_{\pi^+\pi^-}}^{L_{\pi^+\pi^-}}
| |
| − | u^{L_\omega} v^{L_{\pi^+\pi^-}}
| |
| − | </math></td>
| |
| − | </tr>
| |
| − | <tr>
| |
| − | <td><math>
| |
| − | D_{m_\omega m_{\pi^+\pi^-}}^{J_\omega *}(\theta_\omega,\phi_\omega,0)
| |
| − | Y_{m_{\pi^+\pi^-}}^{L_{\pi^+\pi^-}}(\theta_\rho,\phi_\rho)
| |
| − | </math></td>
| |
| − | <td>
| |
| − | two-stage <math>\omega (J_\omega^{PC}=1^{--})</math> breakup angular distributions,
| |
| − | currently modeled as <math>L_{\omega\rightarrow\pi^0+\rho}=0; L_{\rho\rightarrow\pi^++\pi^-}=1=L_{\pi^+\pi^-}</math>
| |
| − | </td>
| |
| − | </tr>
| |
| − | <tr>
| |
| − | <td><math>
| |
| − | \left(\begin{array}{cc|c}
| |
| − | J_\omega & L_{b_1} & J_{b_1} \\
| |
| − | m_\omega & m_{L_{b_1}} & m_{b_1}
| |
| − | \end{array}\right)
| |
| − | \left(\begin{array}{cc|c}
| |
| − | L_\omega & L_{\pi^+\pi^-} & J_\omega \\
| |
| − | 0 & m_{\pi^+\pi^-} & m_\omega
| |
| − | \end{array}\right)
| |
| − | </math></td>
| |
| − | <td>
| |
| − | angular momentum sum Clebsch-Gordan coefficients for b1 and ω decays.
| |
| − | </td>
| |
| − | </tr>
| |
| − | <tr>
| |
| − | <td><math>
| |
| − | \left(\begin{array}{cc|c}
| |
| − | I_\pi & 1 & 0 \\
| |
| − | I_{\pi^0} & 0 & 0
| |
| − | \end{array}\right)
| |
| − | \left(\begin{array}{cc|c}
| |
| − | I_{\pi} & I_{\pi} & 1 \\
| |
| − | I_{z\pi^+} & I_{z\pi^-} & 0
| |
| − | \end{array}\right)
| |
| − | </math></td>
| |
| − | <td>
| |
| − | Clebsch-Gordan coefficients for isospin sums: <math>\pi^0 \oplus (\pi^+ \oplus \pi^-) \rightarrow \omega</math>
| |
| − | </td>
| |
| − | </tr>
| |
| − | </table>
| |
Revision as of 15:35, 1 August 2011
General Relations
Angular Distribution of Two-Body Decay
Let's begin with a general amplitude for the two-body decay of a state with angular momentum quantum numbers J,m. Specifically, we want to know the amplitude of this state having daughter 1 with trajectory
.
We can also describe the angular momentum between the daughters as being L and spin sum as s. Alternatively, we will label the daughters as having helicities of
and
or direction of decay (specified by daughter 1) of
 |
simple insertion of complete sets of states for recoupling
|
![{\displaystyle =\sum _{L,S}\left[{\sqrt {\frac {2J+1}{4\pi }}}D_{m\lambda }^{J*}(\Omega ,0)\right]\left[{\sqrt {\frac {2L+1}{2J+1}}}\left({\begin{array}{cc|c}L&S&J\\0&\lambda &\lambda \end{array}}\right)\left({\begin{array}{cc|c}S_{1}&S_{2}&S\\\lambda _{1}&-\lambda _{2}&\lambda \end{array}}\right)\right]a_{LS}^{J}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a93b86e837aee85c12249ab0f791a8c2693e53e6) |
Substitution of each bra-ket with their respective formulae.
Note that in the event of one daughter being spin-less, the second
Clebsch-Gordan coefficient is 1
|
Isospin Projections
One must also take into account the various ways isospin of daughters can add up to the isospin quantum numbers of the parent, requiring a term:
where a=1 and b=2, referring to the daughter number. Because an even-symmetric angular wave function (i.e. L=0,2...) imply that 180 degree rotation is equivalent to reversal of daughter identities, a,b becoming b,a on must write down the symmetrized expression:
Application