|
|
| Line 72: |
Line 72: |
| | | | |
| | <math> | | <math> |
| − | \langle \Omega_X 0 \lambda_{b_1} | U | J_X m_X \rangle | + | \langle \Omega_X 0 \lambda_{b_1} | U_X | J_X m_X \rangle |
| | =\sum_{L_X} | | =\sum_{L_X} |
| | \left[ \sqrt{\frac{2J_X+1}{4\pi}} D_{m_X \lambda_{b_1}}^{J_X *}(\Omega_X,0) \right] | | \left[ \sqrt{\frac{2J_X+1}{4\pi}} D_{m_X \lambda_{b_1}}^{J_X *}(\Omega_X,0) \right] |
| Line 85: |
Line 85: |
| | | | |
| | <math> | | <math> |
| − | \langle \Omega_{b_1} 0 \lambda_\omega | U | 1 , m_{b_1}=\lambda_{b_1} \rangle | + | \langle \Omega_{b_1} 0 \lambda_\omega | U_{b_1} | 1 , m_{b_1}=\lambda_{b_1} \rangle |
| | =\sum_{L_{b_1}} | | =\sum_{L_{b_1}} |
| | \left[ \sqrt{\frac{2J_{b_1}+1}{4\pi}} D_{m_{b_1}=\lambda_{b_1} \lambda_\omega}^{1 *}(\Omega_{b_1},0) \right] | | \left[ \sqrt{\frac{2J_{b_1}+1}{4\pi}} D_{m_{b_1}=\lambda_{b_1} \lambda_\omega}^{1 *}(\Omega_{b_1},0) \right] |
| Line 98: |
Line 98: |
| | | | |
| | <math> | | <math> |
| − | \langle \Omega_\omega 0 \lambda_\rho | U | 1 , m_\omega=\lambda_\omega \rangle | + | \langle \Omega_\omega 0 \lambda_\rho | U_\omega | 1 , m_\omega=\lambda_\omega \rangle |
| | =\sum_{L_\omega J_\rho} | | =\sum_{L_\omega J_\rho} |
| | \left[ \sqrt{\frac{2J_\omega+1}{4\pi}} D_{m_\omega=\lambda_\omega \lambda_\rho}^{1 *}(\Omega_\omega,0) \right] | | \left[ \sqrt{\frac{2J_\omega+1}{4\pi}} D_{m_\omega=\lambda_\omega \lambda_\rho}^{1 *}(\Omega_\omega,0) \right] |
| Line 111: |
Line 111: |
| | | | |
| | <math> | | <math> |
| − | \langle \Omega_\rho 0 \lambda_\rho | U | J_\rho , m_\rho=\lambda_\rho \rangle | + | \langle \Omega_\rho 0 \lambda_\rho | U_\rho | J_\rho , m_\rho=\lambda_\rho \rangle |
| | =\sum_{L_\rho} | | =\sum_{L_\rho} |
| | \left[ \sqrt{\frac{2J_\rho+1}{4\pi}} D_{m_\rho 0}^{J_\rho *}(\Omega_\rho,0) \right] | | \left[ \sqrt{\frac{2J_\rho+1}{4\pi}} D_{m_\rho 0}^{J_\rho *}(\Omega_\rho,0) \right] |
| Line 122: |
Line 122: |
| | d_{L_\rho} | | d_{L_\rho} |
| | =\sum_{L_\rho} | | =\sum_{L_\rho} |
| − | \sqrt{\frac{2L_\rho+1}{2J_\rho+1}} | + | \sqrt{\frac{2L_\rho+1}{4\pi}} |
| | Y_{m_\rho}^{J_\rho *}(\Omega_\rho) | | Y_{m_\rho}^{J_\rho *}(\Omega_\rho) |
| | d_{L_\rho} | | d_{L_\rho} |
Revision as of 15:17, 28 July 2011
NEW
General Relations
Angular Distribution of Two-Body Decay
Let's begin with a general amplitude for the two-body decay of a state with angular momentum quantum numbers J,m. Specifically, we want to know the amplitude of this state having daughter 1 with trajectory
.
We can also describe the angular momentum between the daughters as being L and spin sum as s. Alternatively, we will label the daughters as having helicities of
and
or direction of decay (specified by daughter 1) of
 |
simple insertion of complete sets of states for recoupling
|
![{\displaystyle =\sum _{L,S}\left[{\sqrt {\frac {2J+1}{4\pi }}}D_{m\lambda }^{J*}(\Omega ,0)\right]\left[{\sqrt {\frac {2L+1}{2J+1}}}\left({\begin{array}{cc|c}L&S&J\\0&\lambda &\lambda \end{array}}\right)\left({\begin{array}{cc|c}S_{1}&S_{2}&S\\\lambda _{1}&-\lambda _{2}&\lambda \end{array}}\right)\right]a_{LS}^{J}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a93b86e837aee85c12249ab0f791a8c2693e53e6) |
Substitution of each bra-ket with their respective formulae.
Note that in the event of one daughter being spin-less, the second
Clebsch-Gordan coefficient is 1
|
Isospin Projections
One must also take into account the various ways isospin of daughters can add up to the isospin quantum numbers of the parent, requiring a term:
where a=1 and b=2, referring to the daughter number. Because an even-symmetric angular wave function (i.e. L=0,2...) imply that 180 degree rotation is equivalent to reversal of daughter identities, a,b becoming b,a on must write down the symmetrized expression:
Application
OLD
 |
defining an amplitude...
|
 |
angular distributions two-body X and decays
|
![{\displaystyle \left[P_{X}(-)^{J_{X}+1+\epsilon }e^{2i\alpha }\left({\begin{array}{cc|c}J_{b_{1}}&L_{X}&J_{X}\\m_{b_{1}}&m_{X}&-1\end{array}}\right)+\left({\begin{array}{cc|c}J_{b_{1}}&L_{X}&J_{X}\\m_{b_{1}}&m_{X}&+1\end{array}}\right)\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fded5277a8bfc72affb1262313d3388212337173) |
resonance helicity sum: ε=0 (1) for x (y) polarization; is the parity of the resonance
|
 |
polarization term: η is the polarization fraction
|
 |
k, q are breakup momenta for the resonance and isobar, respectively
|
 |
Clebsch-Gordan coefficients for isospin sum
|
 |
 |
two-stage breakup angular distributions,
currently modeled as
|
 |
angular momentum sum Clebsch-Gordan coefficients for b1 and ω decays.
|
 |
Clebsch-Gordan coefficients for isospin sums:
|