Difference between revisions of "Amplitudes for the Exotic b1π Decay"
Jump to navigation
Jump to search
Senderovich (talk | contribs) |
Senderovich (talk | contribs) |
||
| Line 1: | Line 1: | ||
| − | < | + | <table> |
| − | + | <tr> | |
| − | + | <td><math> | |
\sum\limits_{m_X=-L_X}^{L_X} \sum\limits_{m_{b1}=-J_{b1}}^{J_{b1}} | \sum\limits_{m_X=-L_X}^{L_X} \sum\limits_{m_{b1}=-J_{b1}}^{J_{b1}} | ||
Y_{m_X}^{L_X}(\theta_X,\phi_X) | Y_{m_X}^{L_X}(\theta_X,\phi_X) | ||
D_{m_{b1} n_{b1}}^{J_{b1}*}(\theta_{b1},\phi_{b1},0) | D_{m_{b1} n_{b1}}^{J_{b1}*}(\theta_{b1},\phi_{b1},0) | ||
| + | </math></td> | ||
| + | <td> | ||
| + | angular distributions two-body X and b1 decays | ||
| + | </td> | ||
| + | </tr> | ||
| + | <tr> | ||
| + | <td><math> | ||
\left[ | \left[ | ||
(-)^{J_X+1+\epsilon} e^{2i\alpha} | (-)^{J_X+1+\epsilon} e^{2i\alpha} | ||
| Line 14: | Line 21: | ||
\left(\begin{array}{cc|c} | \left(\begin{array}{cc|c} | ||
J_{b1} & L_X & J_X \\ | J_{b1} & L_X & J_X \\ | ||
| − | m_{b1} & m_X & | + | m_{b1} & m_X & +1 |
\end{array}\right) | \end{array}\right) | ||
\right] | \right] | ||
| + | </math></td> | ||
| + | <td> | ||
| + | resonance helicity sum | ||
| + | </td> | ||
| + | </tr> | ||
| + | <tr> | ||
| + | <td><math> | ||
\left(\frac{1+(-)^\epsilon \eta}{4}\right) | \left(\frac{1+(-)^\epsilon \eta}{4}\right) | ||
| + | </math></td> | ||
| + | <td> | ||
| + | polarization term: ε=0(1) for x (y) polarization; η is the polarization fraction | ||
| + | </td> | ||
| + | </tr> | ||
| + | <tr> | ||
| + | <td><math> | ||
k^{L_X} q^{J_{b1}} | k^{L_X} q^{J_{b1}} | ||
| + | </math></td> | ||
| + | <td> | ||
| + | k, q are breakup momenta for the resonance and isobar, respectively | ||
| + | </td> | ||
| + | </tr> | ||
| + | <tr> | ||
| + | <td><math> | ||
\left(\begin{array}{cc|c} | \left(\begin{array}{cc|c} | ||
I_{b1} & 1 & I_X \\ | I_{b1} & 1 & I_X \\ | ||
I_{z\pi^+} & I_{z\pi^-} & I_{z\pi^+}+I_{z\pi^-} | I_{z\pi^+} & I_{z\pi^-} & I_{z\pi^+}+I_{z\pi^-} | ||
\end{array}\right) | \end{array}\right) | ||
| − | + | </math></td> | |
| + | <td> | ||
| + | Clebsch-Gordan coefficients for isospin sum <math>b1 \oplus \pi^- \rightarrow X</math> | ||
| + | </td> | ||
| + | </tr> | ||
| + | <tr> | ||
| + | <td><math> | ||
\sum\limits_{L_{b1}=0}^{2} \sum\limits_{m_{L_{b1}}=-L_{b1}}^{L_{b1}} | \sum\limits_{L_{b1}=0}^{2} \sum\limits_{m_{L_{b1}}=-L_{b1}}^{L_{b1}} | ||
| + | D_{m_\omega \lambda_\rho}^{J_\omega *}(\theta_\omega,\phi_\omega,0) | ||
| + | Y_{m_\rho}^{s_\rho}(\theta_\rho,\phi_\rho) | ||
| + | </math></td> | ||
| + | <td> | ||
| + | two-stage ω breakup angular distributions | ||
| + | </td> | ||
| + | </tr> | ||
| + | <tr> | ||
| + | <td><math> | ||
\left(\begin{array}{cc|c} | \left(\begin{array}{cc|c} | ||
s_\omega & L_{b1} & J_{b1} \\ | s_\omega & L_{b1} & J_{b1} \\ | ||
0 & m_{L_{b1}} & m_{b1} | 0 & m_{L_{b1}} & m_{b1} | ||
\end{array}\right) | \end{array}\right) | ||
| − | |||
| − | |||
\left(\begin{array}{cc|c} | \left(\begin{array}{cc|c} | ||
1 & s_\rho & J_\omega \\ | 1 & s_\rho & J_\omega \\ | ||
0 & \lambda_\rho & m_\omega | 0 & \lambda_\rho & m_\omega | ||
\end{array}\right) | \end{array}\right) | ||
| − | + | </math></td> | |
| + | <td> | ||
| + | angular momentum sum Clebsch-Gordan coefficients for b1 and ω decays | ||
| + | </td> | ||
| + | </tr> | ||
| + | <tr> | ||
| + | <td><math> | ||
\sum\limits_{I_\rho=0}^{1} \sum\limits_{I_{z\rho}=-I_\rho}^{I_\rho} | \sum\limits_{I_\rho=0}^{1} \sum\limits_{I_{z\rho}=-I_\rho}^{I_\rho} | ||
\left(\begin{array}{cc|c} | \left(\begin{array}{cc|c} | ||
| Line 45: | Line 92: | ||
+1 & -1 & I_{z\rho} | +1 & -1 & I_{z\rho} | ||
\end{array}\right) | \end{array}\right) | ||
| − | + | </math></td> | |
| − | + | <td> | |
| − | + | Clebsch-Gordan coefficients for isospin sums: <math>\pi^0 \oplus (\pi^+ \oplus \pi^-) \rightarrow \omega</math> | |
| − | + | </td> | |
| − | </ | + | </tr> |
| + | </table> | ||
Revision as of 16:02, 12 July 2011
|
angular distributions two-body X and b1 decays |
|
|
resonance helicity sum |
|
|
polarization term: ε=0(1) for x (y) polarization; η is the polarization fraction |
|
|
k, q are breakup momenta for the resonance and isobar, respectively |
|
|
Clebsch-Gordan coefficients for isospin sum |
|
|
two-stage ω breakup angular distributions |
|
|
angular momentum sum Clebsch-Gordan coefficients for b1 and ω decays |
|
|
Clebsch-Gordan coefficients for isospin sums: |