*Based on the observed beam characteristics and advice from neighboring laser groups, it was decided that the main gas cavity may be dirty therefore preventing passivation of the system. After an exciplex molecule has emitted a photon it returns to its stable state of fluorine and argon, before it can be used for lasing again it requires a rest period. A flow of gas from a circulating fan supplies fresh gas to the lasing window to compensate for this lag time. As the gas is cycled it passes through a series of heat exchangers and a particle filtration system. Each of these are possible sites for corrosion build up which would contaminate the fluorine gas during the cycling process. The figure bellow illustrates the typical gas cavity setup within an excimer laser. | *Based on the observed beam characteristics and advice from neighboring laser groups, it was decided that the main gas cavity may be dirty therefore preventing passivation of the system. After an exciplex molecule has emitted a photon it returns to its stable state of fluorine and argon, before it can be used for lasing again it requires a rest period. A flow of gas from a circulating fan supplies fresh gas to the lasing window to compensate for this lag time. As the gas is cycled it passes through a series of heat exchangers and a particle filtration system. Each of these are possible sites for corrosion build up which would contaminate the fluorine gas during the cycling process. The figure bellow illustrates the typical gas cavity setup within an excimer laser. |