|
|
| Line 5: |
Line 5: |
| | Where: | | Where: |
| | <math>A^\mu = (\mathbf{A},\frac{\Phi} {c}), \square^2=\part_\mu \part^\mu = \nabla^2 - \frac{1}{c^2} \frac{\part}{\part t^2}</math> | | <math>A^\mu = (\mathbf{A},\frac{\Phi} {c}), \square^2=\part_\mu \part^\mu = \nabla^2 - \frac{1}{c^2} \frac{\part}{\part t^2}</math> |
| − | <math>j^\mu = (\mathbf{j},c\rho), \part_\mu= (\mathbf{\nabla}, \frac{1}{c} \frac{\part}{\part t})</math> | + | <math>j^\mu = (\mathbf{j},c\rho), \part_\mu= (\mathbf{\nabla}, \frac{1}{c} \frac{\part}{\part t})</math><br><br> |
| − | | + | Lorentz Gauge: <math>A^\mu = 0 \rArr \mathbf{\nabla} \cdot \mathbf{A}+\frac{1}{c^2} \frac{\part\Phi}{\part t}=0</math><br><br> |
| − | Lorentz Gauge: <math>A^\mu = 0 \rArr \mathbf{\nabla} \cdot \mathbf{A}+\frac{1}{c^2} \frac{\part\Phi}{\part t}=0</math> | + | Introduce Green's function at (x=t) from some impulse source at x'=(<b>x'</b>,t')<br><br> |
| − | | + | <math>\square^2_xG(x,x')=\delta^4(x-x')</math><br><br> |
| − | Introduce Green's function at (x=t) from some impulse source at x'=(<b>x'</b>,t')<br> | + | Let <math> \tilde{G} (q) = \frac{1}{(2\pi)^2} \int d^4x e^{iqx} G(x,0)</math><br><br> |
| − | <math>\square^2_xG(x,x')=\delta^4(x-x')</math> | + | Then <math> G(q)=\frac{1}{(2\pi)^2} \int d^4qe^{iqx} \tilde{G}(x,0)</math><br><br> |
| − | | + | In free space, translational symmetry implies:<br><br> |
| − | Let <math> \tilde{G} (q) = \frac{1}{(2\pi)^2} \int d^4x e^{iqx} G(x,0)</math> | + | <math>G(x-x',0)=G(x,x') \quad </math><br><br> |
| − | | |
| − | Then <math> G(q)=\frac{1}{(2\pi)^2} \int d^4qe^{iqx} \tilde{G}(x,0)</math> | |
| − | | |
| − | In free space, translational symmetry implies:<br> | |
| − | <math>G(x-x',0)=G(x,x') \quad </math> | |
| | | | |
| | ∴<math> G(x,x')=\frac{1}{(2\pi)^2}\int d^4q e^{-iq(x-x')} \tilde{G} (q)</math><br> <math>\square^2_xG(x,x')=\frac{1}{(2\pi)^2}|int d^4qe^{-iq(x-x')}\tilde{G}(q)</math><br><br> | | ∴<math> G(x,x')=\frac{1}{(2\pi)^2}\int d^4q e^{-iq(x-x')} \tilde{G} (q)</math><br> <math>\square^2_xG(x,x')=\frac{1}{(2\pi)^2}|int d^4qe^{-iq(x-x')}\tilde{G}(q)</math><br><br> |
| Line 47: |
Line 42: |
| | <math>A(x')=-c\int dt\int d^2xA(x)\frac{\part}{\part z}G_1(x,x')</math><br><br> | | <math>A(x')=-c\int dt\int d^2xA(x)\frac{\part}{\part z}G_1(x,x')</math><br><br> |
| | To do the t integral, I need to bring out the z derivative. To do this, I first turn it into a z' derivative, using the relation: <br> | | To do the t integral, I need to bring out the z derivative. To do this, I first turn it into a z' derivative, using the relation: <br> |
| − | <math>G_1(x,x')=\frac{-1}{4\pi}\left(\frac{\delta(|\mathbf{x}-\mathbf{x}'|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'|}-\frac{\delta(|\mathbf{x}-\mathbf{x}''|-c(t-t'))}{|\mathbf{x}-\mathbf{x}''|}\right)</math><br><br> | + | <math>G_1(x,x')=\frac{-1}{4\pi}\left(\frac{\delta(|\mathbf{x}-\mathbf{x}'|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'|}-\frac{\delta(|\mathbf{x}-\mathbf{x}''|-c(t-t'))}{|\mathbf{x}-\mathbf{x}''|}\right)</math>, where <math>\mathbf{x}''=\mathbf{x}'-2z'\hat{e_3}</math><br><br> |
Revision as of 18:21, 2 July 2009
Determining Angle for First Diffraction Minimum
We start off with Maxwell's Equation in the Lorentz gauge:
Where:

Lorentz Gauge: 
Introduce Green's function at (x=t) from some impulse source at x'=(x',t')

Let 
Then 
In free space, translational symmetry implies:

∴

, where 
But, 
∴

Chose the "retarded" solution, such that the function is zero unless t>t'




![{\displaystyle ={\frac {1}{(2\pi )^{2}}}{\frac {2}{|\mathbf {x} -\mathbf {x} '|}}{\frac {2\pi }{4}}\left[2\delta (|\mathbf {x} -\mathbf {x} '|+c(t-t'))-2\delta (|\mathbf {x} -\mathbf {x} '|-c(t-t'))\right]\Theta }](https://wikimedia.org/api/rest_v1/media/math/render/svg/49a5589bd5af5cc12be1c4a9741ef26549f7b6c1)
But the term 
∴
Now to get the G1(x,x') in the half-space with z>0 with the boundary condition G1 at x3=z=0 we take the difference:

Now use Green's theorem:
Let 
![{\displaystyle \int \mathbf {\nabla } \cdot \mathbf {F} d^{4}x=\int cdt\int d^{3}x[\mathbf {\nabla } A\cdot \mathbf {\nabla } G+A\nabla ^{2}G_{1}-\mathbf {\nabla } G\cdot \mathbf {\nabla } A-G_{1}\nabla ^{2}A]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f5fe0f18d836935d1cc0d1e9a8b3ce7268539426)
But 
, let 
![{\displaystyle \int \nabla \cdot \mathbf {F} d^{4}x=A(x')+{\frac {1}{c^{2}}}\int d^{4}x\left[A{\frac {\partial ^{2}}{\partial t^{2}}}G_{1}-G_{1}{\frac {\partial ^{2}}{\partial t^{2}}}A\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5fcea9b36150eabba8a50f39f374da0533b34e68)
The last term vanishes if G1(x,x')and A(x) fall off sufficiently fast at
. They do. So:

Now invoke the divergence theorem on the half space
:
, where the last term is zero by the constriction of

To do the t integral, I need to bring out the z derivative. To do this, I first turn it into a z' derivative, using the relation:
, where 