Difference between revisions of "Construction of a Tabletop Michelson Interferometer"

From UConn PAN
Jump to navigation Jump to search
Line 32: Line 32:
 
But the term <math>2\delta(|\mathbf{x}-\mathbf{x}'|+c(t-t'))\rightarrow 0 \quad\forall\quad t>t'</math><br><br>
 
But the term <math>2\delta(|\mathbf{x}-\mathbf{x}'|+c(t-t'))\rightarrow 0 \quad\forall\quad t>t'</math><br><br>
 
&there4;<math>  G(x,x')=\frac{-1}{4\pi}\quad \frac{\delta(|\mathbf{x}-\mathbf{x}'|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'|}</math><br><br>
 
&there4;<math>  G(x,x')=\frac{-1}{4\pi}\quad \frac{\delta(|\mathbf{x}-\mathbf{x}'|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'|}</math><br><br>
Now to get the G<sub>1</sub>(x,x') in the half-space with z>0 with the boundary condition G<sub>1</sub> at x<sub>3</sub>=z=0 we take the difference:<br>
+
Now to get the G<sub>1</sub>(x,x') in the half-space with z>0 with the boundary condition G<sub>1</sub> at x<sub>3</sub>=z=0 we take the difference:<br><br>
 
<math>G_1(x,x')=\frac{-1}{4\pi}\left(\frac{\delta(|\mathbf{x}-\mathbf{x}'|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'|}-\frac{\delta(|\mathbf{x}-\mathbf{x}'-2z\hat{e_3}|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'-2z\hat{e_3}|}\right)</math><br><br>
 
<math>G_1(x,x')=\frac{-1}{4\pi}\left(\frac{\delta(|\mathbf{x}-\mathbf{x}'|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'|}-\frac{\delta(|\mathbf{x}-\mathbf{x}'-2z\hat{e_3}|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'-2z\hat{e_3}|}\right)</math><br><br>
Now use Green's theorem:<br>
+
Now use Green's theorem:<br><br>
 
Let  <math>\mathbf{F}=A(x)\mathbf{\nabla}G_1(x,x')-G_1(x,x')\mathbf{\nabla}A(x)</math><br><br>
 
Let  <math>\mathbf{F}=A(x)\mathbf{\nabla}G_1(x,x')-G_1(x,x')\mathbf{\nabla}A(x)</math><br><br>
 
<math>\int \mathbf{\nabla} \cdot \mathbf{F}d^4x= \int cdt \int d^3x[\mathbf{\nabla}A \cdot \mathbf{\nabla}G+A\nabla^2G_1-\mathbf{\nabla}G \cdot \mathbf{\nabla}A -G_1\nabla^2A]</math><br><br>
 
<math>\int \mathbf{\nabla} \cdot \mathbf{F}d^4x= \int cdt \int d^3x[\mathbf{\nabla}A \cdot \mathbf{\nabla}G+A\nabla^2G_1-\mathbf{\nabla}G \cdot \mathbf{\nabla}A -G_1\nabla^2A]</math><br><br>
Line 40: Line 40:
 
<math>\nabla^2A(x)=\mu j(x)+\frac{1}{c^2}\frac{\part^2}{\part t^2}A(x)</math>, let  <math>j(x)=0 \quad</math><br><br>
 
<math>\nabla^2A(x)=\mu j(x)+\frac{1}{c^2}\frac{\part^2}{\part t^2}A(x)</math>, let  <math>j(x)=0 \quad</math><br><br>
 
<math>\int \nabla \cdot \mathbf{F} d^4x=A(x')+\frac{1}{c^2}\int d^4x\left[A\frac{\part^2}{\part t^2}G_1 - G_1\frac{\part^2}{\part t^2}A\right]</math><br><br>
 
<math>\int \nabla \cdot \mathbf{F} d^4x=A(x')+\frac{1}{c^2}\int d^4x\left[A\frac{\part^2}{\part t^2}G_1 - G_1\frac{\part^2}{\part t^2}A\right]</math><br><br>
The last term vanishes if G<sub>1</sub>(x,x')and A(x) fall off sufficiently fast at t
+
The last term vanishes if G<sub>1</sub>(x,x')and A(x) fall off sufficiently fast at <math>t\rightarrow\infin</math>. They do.  So:<br>
 +
 
 +
<math>\int \nabla \cdot \mathbf{F} d^4x=A(x')</math><br>
 +
Now invoke the divergence theorem on the half space <math>z>0 \quad</math>:<br><br>
 +
<math>A(x')=-\int d^2x\int cdt\left[A(x)\frac{\part}{\part t}G_1(x,x')-G_1(x,x')\frac{\part}{\part z}A(x)\right]</math>, where the last term is zero by the constriction of<math>G_1(z=0) \quad</math><br><br>
 +
<math>A(x')=-c\int dt\int d^2xA(x)\frac{\part}{\part z}G_1(x,x')<math><br><br>
 +
To do the t integral, I need to bring out the z derivative.  To do this, I first turn it into a z' derivative, using the relation: <br>
 +
<math>G_1(x,x')=\frac{-1}{4\pi}\left(\frac{\delta(|\mathbf{x}-\mathbf{x}'|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'|}-\frac{\delta(|\mathbf{x}-\mathbf{x}''c(t-t'))}{|\mathbf{x}-\mathbf{x}''\right)</math>, where <math>\mathbf{x}''=\mathbf{x}'-2z'\hat{e_3}</math>

Revision as of 18:13, 2 July 2009

Determining Angle for First Diffraction Minimum

We start off with Maxwell's Equation in the Lorentz gauge:

Where:

Lorentz Gauge:

Introduce Green's function at (x=t) from some impulse source at x'=(x',t')

Let

Then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G(q)=\frac{1}{(2\pi)^2} \int d^4qe^{iqx} \tilde{G}(x,0)}

In free space, translational symmetry implies:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G(x-x',0)=G(x,x') \quad }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G(x,x')=\frac{1}{(2\pi)^2}\int d^4q e^{-iq(x-x')} \tilde{G} (q)}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \square^2_xG(x,x')=\frac{1}{(2\pi)^2}|int d^4qe^{-iq(x-x')}\tilde{G}(q)}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \square^2_xG(x,x')=\frac{1}{(2\pi)^2}\int d^4qe^{-iq(x-x')}(-k^2+\frac{\omega^2}{c^2})} , where
But, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \square^2_xG(x,x')=\delta^4(x-x')=\frac{1}{(2\pi)^4}\int d^4q e^{-iq(x-x')}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{G}(q)=\frac{(2\pi)^2}{(2\pi)^4}\frac{1}{-q^2}= \frac{-1}{(2\pi)^2q^2}}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G(x,x')=\frac{-1}{(2\pi)^4} \int d^4qe^{-iq(x-x')} \frac{1}{(k+\frac{\omega}{c})(k-\frac{\omega}{c})}}
Chose the "retarded" solution, such that the function is zero unless t>t'
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G(x,x')=\frac{1}{(2\pi)^4}\int d^3ke^{-i\mathbf{k}(x-x')}\int d(\frac{\omega}{c}) \frac{e^{i\omega(t-t')}}{(\frac{\omega}{c}-k)(\frac{\omega}{c}+k)}\Theta}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\frac{1}{(2\pi)^4}\int d^3ke^{-i\mathbf{k}(x-x')}(2\pi i \frac{e^{ick(t-t')}-e^{-ick(t-t')}}{2k})\Theta}



Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\frac{-1}{(2\pi)^2}\left(\frac{1}{2i|\mathbf{x}-\mathbf{x'|}}\right)2\int dk sin(ck(t-t')) sin(k|\mathbf{x}-\mathbf{x'}|)\Theta}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\frac{1}{(2\pi)^2}\frac{2}{|\mathbf{x}-\mathbf{x}'|}\frac{2\pi}{4} \left[2\delta(|\mathbf{x}-\mathbf{x}'|+c(t-t'))-2\delta(|\mathbf{x}-\mathbf{x}'|-c(t-t'))\right]\Theta}

But the term Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\delta(|\mathbf{x}-\mathbf{x}'|+c(t-t'))\rightarrow 0 \quad\forall\quad t>t'}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G(x,x')=\frac{-1}{4\pi}\quad \frac{\delta(|\mathbf{x}-\mathbf{x}'|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'|}}

Now to get the G1(x,x') in the half-space with z>0 with the boundary condition G1 at x3=z=0 we take the difference:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G_1(x,x')=\frac{-1}{4\pi}\left(\frac{\delta(|\mathbf{x}-\mathbf{x}'|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'|}-\frac{\delta(|\mathbf{x}-\mathbf{x}'-2z\hat{e_3}|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'-2z\hat{e_3}|}\right)}

Now use Green's theorem:

Let

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \mathbf{\nabla} \cdot \mathbf{F}d^4x= \int cdt \int d^3x[\mathbf{\nabla}A \cdot \mathbf{\nabla}G+A\nabla^2G_1-\mathbf{\nabla}G \cdot \mathbf{\nabla}A -G_1\nabla^2A]}

But Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nabla^2G_1(x,x')=\delta^4(x-x')+\frac{1}{c^2}\frac{\part^2}{\part t^2}G_1(x,x')}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nabla^2A(x)=\mu j(x)+\frac{1}{c^2}\frac{\part^2}{\part t^2}A(x)} , let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j(x)=0 \quad}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \nabla \cdot \mathbf{F} d^4x=A(x')+\frac{1}{c^2}\int d^4x\left[A\frac{\part^2}{\part t^2}G_1 - G_1\frac{\part^2}{\part t^2}A\right]}

The last term vanishes if G1(x,x')and A(x) fall off sufficiently fast at . They do. So:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \nabla \cdot \mathbf{F} d^4x=A(x')}
Now invoke the divergence theorem on the half space Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z>0 \quad} :

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(x')=-\int d^2x\int cdt\left[A(x)\frac{\part}{\part t}G_1(x,x')-G_1(x,x')\frac{\part}{\part z}A(x)\right]} , where the last term is zero by the constriction ofFailed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G_1(z=0) \quad}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(x')=-c\int dt\int d^2xA(x)\frac{\part}{\part z}G_1(x,x')<math><br><br> To do the t integral, I need to bring out the z derivative. To do this, I first turn it into a z' derivative, using the relation: <br> <math>G_1(x,x')=\frac{-1}{4\pi}\left(\frac{\delta(|\mathbf{x}-\mathbf{x}'|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'|}-\frac{\delta(|\mathbf{x}-\mathbf{x}''c(t-t'))}{|\mathbf{x}-\mathbf{x}''\right)} , where