| Line 1: |
Line 1: |
| − | The following is a review of error propagation needed to compute the errors on the normalization integrals and the intensity sum that is based on them. Consider the estimator for the intensity for a given PWA solution, based on a sum over a Monte Carlo sample with N<sub>gen</sub> phase space events generated and N reconstructed and passing all cuts. <math> | + | The following is a review of error propagation needed to compute the errors on the normalization integrals and the intensity sum that is based on them. Consider the estimator for the intensity for a given PWA solution, based on a sum over a Monte Carlo sample with N<sub>gen</sub> phase space events generated and N reconstructed and passing all cuts. |
| | + | |
| | + | <math> |
| | I=\frac{1}{N_{gen}}\sum_i^N{ | | I=\frac{1}{N_{gen}}\sum_i^N{ |
| | \sum_{\gamma,\delta}{\rho_{\gamma\delta} | | \sum_{\gamma,\delta}{\rho_{\gamma\delta} |
| Line 25: |
Line 27: |
| | } | | } |
| | } | | } |
| | + | </math> |
| | + | :<math> |
| | = \sum_{\alpha,\beta}^n{ | | = \sum_{\alpha,\beta}^n{ |
| | u_\alpha u_\beta^* \left[ \sum_{\gamma,\delta}{\rho_{\gamma\delta} | | u_\alpha u_\beta^* \left[ \sum_{\gamma,\delta}{\rho_{\gamma\delta} |
| Line 40: |
Line 44: |
| | | | |
| | When considering the uncertainty on the overall integral, both the errors on the ''u'' parameters | | When considering the uncertainty on the overall integral, both the errors on the ''u'' parameters |
| − | and those from the finite MC statistics will contribute. The part of the error on the intensity coming from the finite MC statistics is computed using the usual rules for error propagation. A subtle point easy to miss at this stage is that the errors on the <font face="Times">''I''</font><sub>αβ</sub> are correlated because they are computed on the same MC sample. Therefore, while the <font face="Times">''I''</font><sub>αβ</sub> is rank 2 in the partial wave index, its error is rank 4. | + | and those from the finite MC statistics will contribute. The part of the error on the intensity coming from the finite MC statistics is computed using the usual rules for error propagation. |
| | + | |
| | + | |
| | + | <b>A subtle point easy to miss at this stage is that the errors on the <font face="Times">''I''</font><sub>αβ</sub> are correlated because they are computed on the same MC sample. Therefore, while the <font face="Times">''I''</font><sub>αβ</sub> is rank 2 in the partial wave index, its covariance matrix is rank 4.</b> |
| | + | |
| | | | |
| | <math> | | <math> |
| Line 52: |
Line 60: |
| | \right|^2 | | \right|^2 |
| | } | | } |
| | + | - |
| | + | \frac{1}{N_{gen}} |
| | + | \left| |
| | + | \sum_{\alpha,\beta}^n{ |
| | + | u_\alpha u_\beta^* I_{\alpha\beta} |
| | + | } |
| | + | \right|^2 |
| | </math> | | </math> |
| − | ::<math>
| + | :<math> |
| | = \sum_{\alpha,\beta,\alpha',\beta'}^n{ | | = \sum_{\alpha,\beta,\alpha',\beta'}^n{ |
| − | u_\alpha u_\beta^* u_{\alpha'} u_{\beta'}^* | + | u_\alpha u_\beta^* u_{\alpha'}^* u_{\beta'} |
| − | \left[ \sum_{\gamma,\delta,\gamma',\delta'}{ \rho_{\gamma\delta}\rho_{\gamma'\delta'}
| + | \sum_{\gamma,\delta,\gamma',\delta'}{ \rho_{\gamma\delta}\rho_{\gamma'\delta'} \left[ |
| | \frac{1}{N_{gen}^2} \sum_i^N{ | | \frac{1}{N_{gen}^2} \sum_i^N{ |
| | A_\alpha^{\gamma}(x_i) A_\beta^{\delta *}(x_i) | | A_\alpha^{\gamma}(x_i) A_\beta^{\delta *}(x_i) |
| | + | A_{\alpha'}^{\gamma'*}(x_i) A_{\beta'}^{\delta'}(x_i) |
| | + | } |
| | + | \right. |
| | + | } |
| | + | |
| | + | } |
| | + | </math> |
| | + | ::::<math> |
| | + | - |
| | + | \left. |
| | + | \frac{1}{N_{gen}^3} \left( |
| | + | \sum_i^N{ |
| | + | A_\alpha^{\gamma}(x_i) A_\beta^{\delta *}(x_i) |
| | + | }\right) |
| | + | \left(\sum_i^N{ |
| | A_{\alpha'}^{\gamma'}(x_i) A_{\beta'}^{\delta' *}(x_i) | | A_{\alpha'}^{\gamma'}(x_i) A_{\beta'}^{\delta' *}(x_i) |
| − | }} | + | }\right) |
| | \right] | | \right] |
| − | }
| |
| | </math> | | </math> |
| | | | |
| | The relevant piece to pre-compute over the event set for error calculation is shown in brackets. | | The relevant piece to pre-compute over the event set for error calculation is shown in brackets. |
| − | Turning our attention now to the contribution to error on the production parameters ''u'': | + | Turning our attention now to the contribution to error from the fit parameters ''u'', it is convenient to write them explicitly in terms of their real and imaginary parts as ''u = a + ib''. |
| | | | |
| | <math> | | <math> |
| − | \sigma_{fit}^2= | + | I = \sum_{\alpha\beta}^n{ |
| − | \left| \sum_k^n{ \sigma_{u_k} | + | \left(\begin{array}{lr}a_\alpha & b_\alpha\end{array}\right) |
| − | \frac{\partial}{\partial u_k}\left(
| + | \left(\begin{array}{lr}\Re(I_{\alpha\beta}) &-\Im(I_{\alpha\beta}) |
| − | \sum_{\alpha,\beta}^n{u_\alpha u_\beta^* I_{\alpha\beta}}
| + | \\ \Im(I_{\alpha\beta}) & \Re(I_{\alpha\beta}) |
| − | \right)
| + | \end{array}\right) |
| | + | \left(\begin{array}{c}a_\beta \\ b_\beta\end{array}\right) |
| | } | | } |
| − | \right|^2
| |
| | </math> | | </math> |
| − | ::<math>
| + | :<math> |
| − | =\left( \sum_k^n{ \sigma_{u_k} | + | = \sum_{\alpha\beta}^{2n}{a_\alpha a_\beta J_{\alpha\beta}} |
| − | \sum_{\gamma,\delta}{ \rho_{\gamma\delta}
| + | </math> |
| − | \sum_{\alpha,\beta}^n{\delta_{k\alpha} u_\beta^* J^{\gamma\delta}_{\alpha\beta}}
| + | where the ''a'' coefficients stand for both the ''a'' and ''b'' terms |
| − | }
| + | introduced above, so that the sum over ''n'' complex parameters is expanded to a sum over 2''n'' real ones. The matrix ''J'' represents the above ''2n''x''2n'' matrix of the elements of ''I''. The variance on the intensity sum is expressed in terms of the covariance matrix |
| − | }\right)
| + | ''C''<sub>αβ</sub> among the fit parameters ''a''<sub>α</sub> as |
| − | \left( \sum_{k'}^n{ \sigma^*_{u_{k'}}
| + | |
| − | \sum_{\gamma',\delta'}{ \rho_{\gamma'\delta'}
| + | <math> |
| − | \sum_{\alpha',\beta'}^n{\delta_{k'\alpha'} u_{\beta'} J^{\gamma'\delta'*}_{\alpha'\beta'}}
| + | \sigma_{fit}^2= |
| | + | \sum_{\alpha,\beta,\alpha',\beta'}^{2n}{\left( |
| | + | a_\beta a_{\alpha'} J_{\alpha\beta} J_{\alpha'\beta'} |
| | + | \right) C_{\alpha\beta'} |
| | } | | } |
| − | }\right)
| |
| | </math> | | </math> |
| | ::<math> | | ::<math> |
| − | = \sum_{\gamma,\delta,\gamma',\delta'}{ | + | = \sum_{\alpha,\beta'}^{2n}{ |
| − | \rho_{\gamma\delta} \rho_{\gamma'\delta'}
| + | \left(\sum_{\beta}^{2n}{a_{\beta}J_{\alpha\beta}}\right) |
| − | \sum_{\alpha,\beta,\alpha',\beta'}^n{
| + | \left(\sum_{\alpha'}^{2n}{a_{\alpha'}J_{\alpha'\beta'}}\right) |
| − | \left(\sigma_{u_\alpha}\sigma^*_{u_{\alpha'}}\right) | + | C_{\alpha\beta'} |
| − | \left(u_\beta^* J^{\gamma\delta}_{\alpha\beta}\right)
| |
| − | \left(u_{\beta'} J^{\gamma'\delta'*}_{\alpha'\beta'} \right) | |
| | } | | } |
| − | }
| |
| | </math> | | </math> |
| | ::<math> | | ::<math> |
| − | = \sum_{\gamma,\delta,\gamma',\delta'}{ | + | = \sum_{\alpha,\alpha'}^{2n}{ |
| − | \rho_{\gamma\delta} \rho_{\gamma'\delta'}
| + | G_\alpha G_{\alpha'} C_{\alpha\alpha'} |
| − | \sum_{\alpha,\alpha'}^n{
| |
| − | \left(\sigma_{u_\alpha}\sigma^*_{u_{\alpha'}}\right) | |
| − | G^{\gamma\delta*}_\alpha G_{\alpha'}^{\gamma\delta}
| |
| − | }
| |
| | } | | } |
| | </math> | | </math> |
| | | | |
| − | The product of σ terms in the summation is represented by the error matrix derived from the fit. ''G'' was defined as
| + | where ''J'' and ''C'' are both symmetric matrices, and ''G'' is |
| | + | defined as |
| | | | |
| | <math> | | <math> |
| − | G_\alpha^{\gamma\delta}=\sum_\beta{ u_\beta J_{\alpha\beta}^{\gamma\delta}} | + | G_\alpha = \sum_\beta^{2n}{ a_\beta J_{\alpha\beta}} |
| | </math> | | </math> |
| | | | |