Difference between revisions of "Error propagation in Amplitude Analysis"

From UConn PAN
Jump to navigation Jump to search
Line 38: Line 38:
 
= \sum_{\gamma,\delta}{\rho_{\gamma\delta}
 
= \sum_{\gamma,\delta}{\rho_{\gamma\delta}
 
     \sum_{\alpha,\beta}^n{
 
     \sum_{\alpha,\beta}^n{
       u_\alpha u_\beta^* J_{\alpha \beta}
+
       u_\alpha u_\beta^* J^{\gamma\delta}_{\alpha \beta}
 
     }
 
     }
 
   }
 
   }
Line 46: Line 46:
  
 
When considering the uncertainty on the overall integral, both the errors on ''u'' parameters  
 
When considering the uncertainty on the overall integral, both the errors on ''u'' parameters  
and those from the finite MC set of events will contribute. A single detected event (i) can be viewed as one sample of a Poisson process, having therefore an uncertainty of  
+
and those from the finite MC set of events will contribute. A single detected event (i) can be viewed as one sample in a process of independent events, having therefore a count uncertainty of  
 
&sigma;<sub>i</sub>=1. An integral over such events is then a weighted sum of such samples,  
 
&sigma;<sub>i</sub>=1. An integral over such events is then a weighted sum of such samples,  
having therefore a contribution to the variance:
+
having resulting in a contribution to the variance:
  
 
<math>
 
<math>
Line 79: Line 79:
 
<math>
 
<math>
 
\sigma_{fit}^2=
 
\sigma_{fit}^2=
\sum_{k,l}^n{ \sigma_{u_k}\sigma_{u_l}
+
\left| \sum_k^n{ \sigma_{u_k}
 
   \frac{\partial}{\partial u_k}\left(
 
   \frac{\partial}{\partial u_k}\left(
   \sum_{\gamma,\delta}{\rho_{\gamma\delta}
+
   \sum_{\gamma,\delta}{ \rho_{\gamma\delta}
     \sum_{\alpha,\beta}^n{
+
     \sum_{\alpha,\beta}^n{u_\alpha u_\beta^* J_{\alpha\beta}}
       u_\alpha u_\beta^* J_{\alpha\beta}
+
  }
 +
  \right)
 +
}
 +
\right|^2
 +
</math>
 +
::<math>
 +
=\left( \sum_k^n{ \sigma_{u_k}
 +
  \sum_{\gamma,\delta}{ \rho_{\gamma\delta}
 +
    \sum_{\alpha,\beta}^n{\delta_{k\alpha} u_\beta^* J^{\gamma\delta}_{\alpha\beta}}
 +
  }
 +
}\right)
 +
\left( \sum_{k'}^n{ \sigma^*_{u_{k'}}
 +
  \sum_{\gamma',\delta'}{ \rho_{\gamma'\delta'}
 +
    \sum_{\alpha',\beta'}^n{\delta_{k'\alpha'} u_{\beta'} J^{\gamma'\delta'*}_{\alpha'\beta'}}
 +
  }
 +
}\right)
 +
</math>
 +
::<math>
 +
= \sum_{\gamma,\delta,\gamma',\delta'}{
 +
    \rho_{\gamma\delta} \rho_{\gamma'\delta'}
 +
    \sum_{\alpha,\beta,\alpha',\beta'}^n{
 +
       \left(\sigma_{u_\alpha}\sigma^*_{u_{\alpha'}}\right)
 +
      \left(u_\beta^* J^{\gamma\delta}_{\alpha\beta}\right)
 +
      \left(u_{\beta'} J^{\gamma'\delta'*}_{\alpha'\beta'} \right)
 
     }
 
     }
 
   }
 
   }
  \right)
+
</math>
  \frac{\partial}{\partial u_l}\left(
+
::<math>
  \sum_{\gamma',\delta'}{\rho_{\gamma'\delta'}
+
= \sum_{\gamma,\delta,\gamma',\delta'}{  
     \sum_{\alpha',\beta'}^n{
+
    \rho_{\gamma\delta} \rho_{\gamma'\delta'}
       u_{\alpha'} u_{\beta'}^* J_{\alpha'\beta'}
+
     \sum_{\alpha,\alpha'}^n{
 +
       \left(\sigma_{u_\alpha}\sigma^*_{u_{\alpha'}}\right)
 +
      G^{\gamma\delta*}_\alpha G_{\alpha'}^{\gamma\delta}
 
     }
 
     }
 
   }
 
   }
  \right)
 
}
 
 
</math>
 
</math>
The product of &sigma; terms in the summation are the error matrix derived from the fit.
+
 
 +
The product of &sigma; terms in the summation is represented by the error matrix derived from the fit. ''G'' was defined as
 +
 
 +
<math>
 +
G_\alpha^{\gamma\delta}=\sum_\beta{ u_\beta J_{\alpha\beta}^{\gamma\delta}}
 +
</math>
 +
 
 +
The overall uncertainty in the integral ''I'' defined in the beginning comes out to:
 +
 
 +
<math>
 +
\sigma_I=\sqrt{\sigma^2_{MC} + \sigma^2_{fit}}
 +
</math>

Revision as of 03:21, 22 November 2011

The following is a review of error propagation needed in amplitude analysis.

Consider a Monte-Carlo (MC) integral over the intensities of N detected events out of Ngen generated.

where we take n coherent amplitudes and allow incoherent sums indexed by γ, δ to allow for applications like spin-density matrices (ρ). When amplitude analysis fits contain amplitudes with not free parameters, it is convenient to rearrange the summations above, to pre-compute the sum over the intensities of the events:

storing the term in square brackets, a matrix indexed by α,β, for contractions with varying free production parameters u in the course of a fit.

When considering the uncertainty on the overall integral, both the errors on u parameters and those from the finite MC set of events will contribute. A single detected event (i) can be viewed as one sample in a process of independent events, having therefore a count uncertainty of σi=1. An integral over such events is then a weighted sum of such samples, having resulting in a contribution to the variance:

The relevant piece to pre-compute over the event set for error calculation is shown in brackets. Turning our attention now to the contribution to error on the production parameters u:

The product of σ terms in the summation is represented by the error matrix derived from the fit. G was defined as

The overall uncertainty in the integral I defined in the beginning comes out to: