Difference between revisions of "Amplitudes for the Exotic b1π Decay"
Jump to navigation
Jump to search
Senderovich (talk | contribs) m |
Senderovich (talk | contribs) |
||
| Line 13: | Line 13: | ||
\sum\limits_{m_{b1}=-J_{b_1}}^{J_{b_1}} | \sum\limits_{m_{b1}=-J_{b_1}}^{J_{b_1}} | ||
\sum\limits_{m_\omega=-J_\omega}^{J_\omega} | \sum\limits_{m_\omega=-J_\omega}^{J_\omega} | ||
| − | + | D_{m_X m_{b_1}}^{L_X *}(\theta_X,\phi_X,0) | |
D_{m_{b_1} m_\omega}^{J_{b_1}*}(\theta_{b_1},\phi_{b_1},0) | D_{m_{b_1} m_\omega}^{J_{b_1}*}(\theta_{b_1},\phi_{b_1},0) | ||
</math></td> | </math></td> | ||
| Line 59: | Line 59: | ||
\left(\begin{array}{cc|c} | \left(\begin{array}{cc|c} | ||
I_{b_1} & I_\pi & I_X \\ | I_{b_1} & I_\pi & I_X \\ | ||
| − | I_{ | + | I_{zb_1^+} & I_{z\pi^-} & I_{zb_1^+}+I_{z\pi^-} |
\end{array}\right) | \end{array}\right) | ||
</math></td> | </math></td> | ||
| Line 70: | Line 70: | ||
\sum\limits_{L_{b_1}=0}^{2} | \sum\limits_{L_{b_1}=0}^{2} | ||
\sum\limits_{m_{L_{b_1}}=-L_{b_1}}^{L_{b_1}} | \sum\limits_{m_{L_{b_1}}=-L_{b_1}}^{L_{b_1}} | ||
| − | \sum\limits_{\ | + | \sum\limits_{L_{\pi^+\pi^-},L_\omega=1,3} |
| − | D_{m_\omega \ | + | \sum\limits_{m_{\pi^+\pi^-}=-L_{\pi^+\pi^-}}^{L_{\pi^+\pi^-}} |
| − | Y_{\ | + | u^{L_\omega} v^{L_{\pi^+\pi^-}} |
| + | </math></td> | ||
| + | </tr> | ||
| + | <tr> | ||
| + | <td><math> | ||
| + | D_{m_\omega m_{\pi^+\pi^-}}^{J_\omega *}(\theta_\omega,\phi_\omega,0) | ||
| + | Y_{m_{\pi^+\pi^-}}^{L_{\pi^+\pi^-}}(\theta_\rho,\phi_\rho) | ||
</math></td> | </math></td> | ||
<td> | <td> | ||
two-stage <math>\omega (J_\omega^{PC}=1^{--})</math> breakup angular distributions, | two-stage <math>\omega (J_\omega^{PC}=1^{--})</math> breakup angular distributions, | ||
| − | currently modeled as <math>L_{\omega\rightarrow\pi^0+\rho}=0; L_{\rho\rightarrow\pi^++\pi^-}=1= | + | currently modeled as <math>L_{\omega\rightarrow\pi^0+\rho}=0; L_{\rho\rightarrow\pi^++\pi^-}=1=L_{\pi^+\pi^-}</math> |
</td> | </td> | ||
</tr> | </tr> | ||
| Line 86: | Line 92: | ||
\end{array}\right) | \end{array}\right) | ||
\left(\begin{array}{cc|c} | \left(\begin{array}{cc|c} | ||
| − | + | L_\omega & L_{\pi^+\pi^-} & J_\omega \\ | |
| − | 0 & \ | + | 0 & m_{\pi^+\pi^-} & m_\omega |
\end{array}\right) | \end{array}\right) | ||
</math></td> | </math></td> | ||
| Line 96: | Line 102: | ||
<tr> | <tr> | ||
<td><math> | <td><math> | ||
| − | |||
| − | |||
\left(\begin{array}{cc|c} | \left(\begin{array}{cc|c} | ||
| − | + | I_\pi & 1 & 0 \\ | |
| − | + | I_{\pi^0} & 0 & 0 | |
\end{array}\right) | \end{array}\right) | ||
\left(\begin{array}{cc|c} | \left(\begin{array}{cc|c} | ||
| − | I_{\pi} & I_{\pi} & | + | I_{\pi} & I_{\pi} & 1 \\ |
| − | + | + | I_{z\pi^+} & I_{z\pi^-} & 0 |
\end{array}\right) | \end{array}\right) | ||
</math></td> | </math></td> | ||
Revision as of 20:20, 14 July 2011
|
defining an amplitude... |
|
|
angular distributions two-body X and decays |
|
|
resonance helicity sum: ε=0 (1) for x (y) polarization; is the parity of the resonance |
|
|
polarization term: η is the polarization fraction |
|
|
k, q are breakup momenta for the resonance and isobar, respectively |
|
|
Clebsch-Gordan coefficients for isospin sum |
|
|
two-stage breakup angular distributions, currently modeled as |
|
|
angular momentum sum Clebsch-Gordan coefficients for b1 and ω decays. |
|
|
Clebsch-Gordan coefficients for isospin sums: |