Difference between revisions of "Construction of a Tabletop Michelson Interferometer"
| Line 1: | Line 1: | ||
== Determining Angle of First Diffraction Minimum == | == Determining Angle of First Diffraction Minimum == | ||
We start off with Maxwell's Equation in the Lorentz gauge: | We start off with Maxwell's Equation in the Lorentz gauge: | ||
| − | <math>\square^2A^\mu(\mathbf{r},t) = \square^2A^\mu (r)= | + | :<math>\square^2A^\mu(\mathbf{r},t) = \square^2A^\mu (r)=\mu j^\mu (r)</math><br><br> |
| − | + | where we use the metric signature (+,+,+,-) and<br><br> | |
| − | <math>A^\mu = (\mathbf{A},\frac{\Phi} {c}), \square^2=\part_\mu \part^\mu = \nabla^2 - \frac{1}{c^2} \frac{\part}{\part t^2}</math> | + | :<math>A^\mu = (\mathbf{A},\frac{\Phi} {c})</math>, |
| − | <math>j^\mu = (\mathbf{j},c\rho), \part_\mu= (\mathbf{\nabla}, \frac{1}{c} \frac{\part}{\part t})</math><br><br> | + | :<math>\square^2=\part_\mu \part^\mu = \nabla^2 - \frac{1}{c^2} \frac{\part^2}{\part t^2}</math> |
| − | Lorentz Gauge: <math>A^\mu = 0 \rArr \mathbf{\nabla} \cdot \mathbf{A} | + | :<math>j^\mu = (\mathbf{j},c\rho), \part_\mu= (\mathbf{\nabla}, \frac{1}{c} \frac{\part}{\part t})</math><br><br> |
| + | Lorentz Gauge: <math>\part_\mu A^\mu = 0 \rArr \mathbf{\nabla} \cdot \mathbf{A}-\frac{1}{c^2} \frac{\part\Phi}{\part t}=0</math><br><br> | ||
Introduce Green's function at<math> (\mathbf{r},t)=r \quad</math> from some impulse source at<math> r'=(\mathbf{r}',t') \quad</math><br><br> | Introduce Green's function at<math> (\mathbf{r},t)=r \quad</math> from some impulse source at<math> r'=(\mathbf{r}',t') \quad</math><br><br> | ||
<math>\square^2_rG(r,r')=\delta^4(r-r')</math><br><br> | <math>\square^2_rG(r,r')=\delta^4(r-r')</math><br><br> | ||
| − | Let <math> \tilde{G} (q) = \frac{1}{(2\pi)^2} \int d^4r e^{ | + | Let <math> \tilde{G} (q) = \frac{1}{(2\pi)^2} \int d^4r e^{-iq\cdot r} G(r,0)</math><br><br> |
| − | Then <math> G( | + | Then <math> G(r,0)=\frac{1}{(2\pi)^2} \int d^4qe^{iq\cdot r} \tilde{G}(q)</math><br><br> |
| − | + | Translational symmetry implies:<br><br> | |
<math>G(r-r',0)=G(r,r') \quad </math><br><br> | <math>G(r-r',0)=G(r,r') \quad </math><br><br> | ||
| − | ∴<math> G(r,r')=\frac{1}{(2\pi)^2}\int d^4q e^{ | + | ∴<math> G(r,r')=\frac{1}{(2\pi)^2}\int d^4q e^{iq\cdot (r-r')} \tilde{G} (q)</math><br> <math>\square^2_rG(r,r')=\frac{1}{(2\pi)^2}\int d^4qe^{iq\cdot (r-r')}\tilde{G}(q)</math><br><br> |
| − | <math>\square^2_rG(r,r')=\frac{1}{(2\pi)^2}\int d^4qe^{ | + | <math>\square^2_rG(r,r')=\frac{1}{(2\pi)^2}\int d^4qe^{iq\cdot (r-r')}(-k^2+\frac{\omega^2}{c^2})</math>, where <math>q=(\mathbf{k},\frac{\omega}{c}) \quad</math><br><br> |
| − | But, <math>\square^2_rG(r,r')=\delta^4(r-r')=\frac{1}{(2\pi)^4}\int d^4q e^{ | + | But, <math>\square^2_rG(r,r')=\delta^4(r-r')=\frac{1}{(2\pi)^4}\int d^4q e^{iq\cdot (r-r')}</math><br><br> |
∴<math>\tilde{G}(q)=\frac{(2\pi)^2}{(2\pi)^4}\frac{1}{-q^2}= \frac{-1}{(2\pi)^2q^2}</math><br><br> | ∴<math>\tilde{G}(q)=\frac{(2\pi)^2}{(2\pi)^4}\frac{1}{-q^2}= \frac{-1}{(2\pi)^2q^2}</math><br><br> | ||
| − | <math>G(r,r')=\frac{-1}{(2\pi)^4} \int d^4qe^{ | + | <math>G(r,r')=\frac{-1}{(2\pi)^4} \int d^4qe^{iq\cdot (r-r')} \frac{1}{(k+\frac{\omega}{c})(k-\frac{\omega}{c})}</math><br><br> |
Chose the "retarded" solution, such that the function is zero unless t>t'<br><br> | Chose the "retarded" solution, such that the function is zero unless t>t'<br><br> | ||
| − | <math>G(r,r')=\frac{1}{(2\pi)^4}\int d^3ke^{ | + | <math>G(r,r')=\frac{1}{(2\pi)^4}\int d^3ke^{i\mathbf{k}\cdot (r-r')}\int d(\frac{\omega}{c}) \frac{e^{-i\omega(t-t')}}{(\frac{\omega}{c}-k)(\frac{\omega}{c}+k)}\Theta(t-t')</math><br><br> |
| − | <math>=\frac{1}{(2\pi)^4}\int d^3ke^{ | + | <math>=\frac{1}{(2\pi)^4}\int d^3ke^{i\mathbf{k}\cdot (r-r')}(2\pi i \frac{e^{ick(t-t')}-e^{-ick(t-t')}}{2k})\Theta</math><br><br> |
| − | <math>=\frac{-2\pi}{(2\pi)^4}\ | + | <math>=\frac{-2\pi}{(2\pi)^4}\int_0 \frac{k^2dk}{k} \sin\left({ck(t-t')}\right) 2\pi\int_{-1}^1 dze^{ik|\mathbf{r}-\mathbf{r'}|z}\Theta</math><br><br> |
| − | <math>=\frac{-1}{(2\pi)^2}\left(\frac{1}{ | + | <math>=\frac{-1}{(2\pi)^2}\left(\frac{1}{|\mathbf{r}-\mathbf{r'|}}\right)2\int_0 dk \sin(ck(t-t')) \sin(k|\mathbf{r}-\mathbf{r'}|)\Theta</math><br><br> |
| − | <math>=\frac{1}{(2\pi)^2}\frac{2}{|\mathbf{r}-\mathbf{r}'|}\frac{2\pi}{4} \left[ | + | <math>=\frac{1}{(2\pi)^2}\frac{2}{|\mathbf{r}-\mathbf{r}'|}\frac{2\pi}{4} \left[\delta(|\mathbf{r}-\mathbf{r}'|+c(t-t'))-\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))\right]\Theta</math><br><br> |
| − | But the term <math> | + | But the term <math>\delta(|\mathbf{r}-\mathbf{r}'|+c(t-t'))\rightarrow 0 \quad\forall\quad t>t'</math><br><br> |
∴<math> G(r,r')=\frac{-1}{4\pi}\quad \frac{\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'|}</math><br><br> | ∴<math> G(r,r')=\frac{-1}{4\pi}\quad \frac{\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'|}</math><br><br> | ||
Now to get the <math>G_1(r,r')\quad </math> in the half-space with z>0 with the boundary condition <math>G_1\quad </math> at<math> r_3=z=0 \quad</math> we take the difference:<br><br> | Now to get the <math>G_1(r,r')\quad </math> in the half-space with z>0 with the boundary condition <math>G_1\quad </math> at<math> r_3=z=0 \quad</math> we take the difference:<br><br> | ||
| − | <math>G_1(r,r')=\frac{-1}{4\pi}\left(\frac{\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'|}-\frac{\delta(|\mathbf{r}-\mathbf{r}' | + | <math>G_1(r,r')=\frac{-1}{4\pi}\left(\frac{\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'|}-\frac{\delta(|\mathbf{r}-\mathbf{r}'+2z'\hat{e_3}|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'+2z'\hat{e_3}|}\right)</math><br><br> |
Now use Green's theorem:<br><br> | Now use Green's theorem:<br><br> | ||
| − | Let <math>\ | + | Let <math>F^\mu=A(r)\part_\mu G_1(r,r')-G_1(r,r')\part_\mu A(r)</math><br><br> |
| − | <math>\int \ | + | <math>\int \part_\mu F_\mu d^4r= \int cdt \int d^3r[\part_\mu A \part^\mu G+A\part_\mu \part^\mu G_1-\part_\mu G \part^\mu A -G_1\part_\mu \part^\mu A]</math><br><br> |
| − | But <math>\ | + | But <math>\part_\mu \part^\mu G_1(r,r')=\delta^4(r-r')</math><br><br> |
| − | <math>\ | + | <math>\part_\mu \part^\mu A(r)= \mu j(r)</math>, let <math>j(r)=0 \quad</math><br><br> |
| − | <math>\int \ | + | <math>\int \part_\mu F_\mu d^4r=A(r')</math><br><br> |
| − | |||
| − | |||
Now invoke the divergence theorem on the half space <math>z>0 \quad</math>:<br><br> | Now invoke the divergence theorem on the half space <math>z>0 \quad</math>:<br><br> | ||
| − | <math>A(r')=-\int d^2r\int cdt\left[A(r)\frac{\part}{\part | + | <math>A(r')=-\int d^2r\int cdt\left[A(r)\frac{\part}{\part z}G_1(r,r')-G_1(r,r')\frac{\part}{\part z}A(r)\right]</math>, where the last term is zero by the condition of<math>G_1(z=0,r')=0 \quad</math><br><br> |
<math>A(r')=-c\int dt\int d^2rA(r)\frac{\part}{\part z}G_1(r,r')</math><br><br> | <math>A(r')=-c\int dt\int d^2rA(r)\frac{\part}{\part z}G_1(r,r')</math><br><br> | ||
To do the t integral, I need to bring out the z derivative. To do this, I first turn it into a z' derivative, using the relation: <br><br><br> | To do the t integral, I need to bring out the z derivative. To do this, I first turn it into a z' derivative, using the relation: <br><br><br> | ||
<math>G_1(r,r')=\frac{-1}{4\pi}\left(\frac{\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'|}-\frac{\delta(|\mathbf{r}-\mathbf{r}''|-c(t-t'))}{|\mathbf{r}-\mathbf{r}''|}\right)</math>, where <math>\mathbf{r}''=\mathbf{r}'-2z'\hat{e_3}</math><br><br> | <math>G_1(r,r')=\frac{-1}{4\pi}\left(\frac{\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'|}-\frac{\delta(|\mathbf{r}-\mathbf{r}''|-c(t-t'))}{|\mathbf{r}-\mathbf{r}''|}\right)</math>, where <math>\mathbf{r}''=\mathbf{r}'-2z'\hat{e_3}</math><br><br> | ||
| − | <math>\frac{\part}{\part z}G_1(r,r')=\frac{1}{4\pi}\left(\frac{\part}{\part z}\left(\frac{\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'|}-\frac{\delta(|\mathbf{r}-\mathbf{r}''|-c(t-t'))}{|\mathbf{r}-\mathbf{r}''|}\right)\right)</math><br><br> | + | <math>\frac{\part}{\part z}G_1(r,r')=\frac{-1}{4\pi}\left(\frac{\part}{\part z}\left(\frac{\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'|}-\frac{\delta(|\mathbf{r}-\mathbf{r}''|-c(t-t'))}{|\mathbf{r}-\mathbf{r}''|}\right)\right)</math><br><br> |
| − | ∴ <math>A(r')=\frac{-1}{4\pi}\frac{\part}{\part z'}\int_{z=0} d^2r\left(2\frac{A(\mathbf{r},t'-\frac{\mathbf{r}-\mathbf{r}'}{c}}{\mathbf{r}-\mathbf{r}'}\right)</math><br><br> | + | ∴ <math>A(r')=\frac{-1}{4\pi}\frac{\part}{\part z'}\int_{z=0} d^2r\left(2\frac{A(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c})}{|\mathbf{r}-\mathbf{r}'|}\right)</math><br><br> |
At <math>z=0 \quad </math>, <math>|\mathbf{r}-\mathbf{r}'|=\sqrt{r^2+z'^2}=S, dS=\frac{rdr}{\sqrt{r^2+z'^2}}</math><br><br> | At <math>z=0 \quad </math>, <math>|\mathbf{r}-\mathbf{r}'|=\sqrt{r^2+z'^2}=S, dS=\frac{rdr}{\sqrt{r^2+z'^2}}</math><br><br> | ||
| − | If<math>A(\mathbf{r},t) \quad</math> is independent of | + | If<math>A(\mathbf{r},t) \quad</math> is independent of position, as in a plane wave propagating along the z axis, then:<br><br> |
| − | <math>A(r')=\frac{-\part}{\part z'}\int_{z' | + | <math>A(r')=\frac{-\part}{\part z'}\int_{z'}^\infin dS A\left(\mathbf{0},t-\frac{S}{c}\right)=A\left(\mathbf{\mathbf{0}},t'-\frac{z'}{c}\right)</math><br><br> |
This gives us uniform translation of waves at velocity c. More generally: <br><br> | This gives us uniform translation of waves at velocity c. More generally: <br><br> | ||
<math>A(r')=\frac{-1}{2\pi}\int_{z=0} d^2r\frac{\part}{\part z'}\left(\frac{A\left(\mathbf{r}, t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|}\right)</math><br><br> | <math>A(r')=\frac{-1}{2\pi}\int_{z=0} d^2r\frac{\part}{\part z'}\left(\frac{A\left(\mathbf{r}, t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|}\right)</math><br><br> | ||
<math>=\frac{-1}{2\pi}\int_{z=0} d^2r\left(\frac{A\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^3}(-z')+\frac{\dot{A}\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|c}\frac{-z'}{|\mathbf{r}-\mathbf{r}'|}\right)</math><br><br> | <math>=\frac{-1}{2\pi}\int_{z=0} d^2r\left(\frac{A\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^3}(-z')+\frac{\dot{A}\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|c}\frac{-z'}{|\mathbf{r}-\mathbf{r}'|}\right)</math><br><br> | ||
| − | <math>A(r')=\frac{-1}{2\pi}\int_{z=0} d^2r\left(\frac{A\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^3}(-z')+\frac{1}{c}\frac{\dot{A}\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^2}(z')\right)</math><br><br> | + | <math>A(r')=\frac{-1}{2\pi}\int_{z=0} d^2r\left(\frac{A\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^3}(-z')+\frac{1}{c}\frac{\dot{A}\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^2}(-z')\right)</math><br><br> |
| − | In our case, we consider only those waves which | + | In our case, we consider only those waves which drop off as <math>\frac{1}{r'} \quad</math>, so:<br><br> |
<math>A(r')=\frac{-1}{2\pi}\int_{z=0} d^2r\left(\frac{1}{c}\frac{\dot{A}\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^2}(z')\right)</math><br><br> | <math>A(r')=\frac{-1}{2\pi}\int_{z=0} d^2r\left(\frac{1}{c}\frac{\dot{A}\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^2}(z')\right)</math><br><br> | ||
<math>A(r')=\frac{-z'}{2\pi c}\int_{z=0} d^2r\left(\frac{\dot{A}\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^2}\right)</math><br><br> | <math>A(r')=\frac{-z'}{2\pi c}\int_{z=0} d^2r\left(\frac{\dot{A}\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|^2}\right)</math><br><br> | ||
| − | In cylindrical coordinates, <math>d^2r=rdrd\phi \quad</math>. Also, <math>\dot{A}\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)=\dot{ | + | In cylindrical coordinates, <math>d^2r=rdrd\phi \quad</math>. Also, <math>\dot{A}\left(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)=\dot{A}(\mathbf{r},0)e^{-ik(t'c-|\mathbf{r}-\mathbf{r}'|)}</math>. So:<br><br> |
<math>A(r')=\frac{-z'\dot{A_0}}{2\pi c}\int_{z=0} rdrd\phi \frac{e^{-ik(t'c-|\mathbf{r}-\mathbf{r}'|)}}{|\mathbf{r}-\mathbf{r}'|^2}</math><br><br> | <math>A(r')=\frac{-z'\dot{A_0}}{2\pi c}\int_{z=0} rdrd\phi \frac{e^{-ik(t'c-|\mathbf{r}-\mathbf{r}'|)}}{|\mathbf{r}-\mathbf{r}'|^2}</math><br><br> | ||
| − | Let<math>\mathcal{J}(r')=\int_0^a rdr\int_0^2\pi d\phi \frac{e^{ik|\mathbf{r}-\mathbf{r}'|}}{|\mathbf{r}-\mathbf{r}'|}</math><br><br> | + | Picture an opaque screen with a circular aperture of radius a.<br><br> |
| + | Let<math>\mathcal{J}(r')=\int_0^a rdr\int_0^{2\pi} d\phi \frac{e^{ik|\mathbf{r}-\mathbf{r}'|}}{|\mathbf{r}-\mathbf{r}'|}</math><br><br> | ||
Then <math>A(r')=\frac{-z'\dot{A_0}}{2\pi c}e^{-ikct'}\mathcal{J}(r')</math> | Then <math>A(r')=\frac{-z'\dot{A_0}}{2\pi c}e^{-ikct'}\mathcal{J}(r')</math> | ||
<math>|\mathbf{r}-\mathbf{r}'|=\sqrt{(x-x')^2+(y-y')^2+z'^2}=\sqrt{r^2+r'^2+2r\rho^2cos\phi}</math><br><br> | <math>|\mathbf{r}-\mathbf{r}'|=\sqrt{(x-x')^2+(y-y')^2+z'^2}=\sqrt{r^2+r'^2+2r\rho^2cos\phi}</math><br><br> | ||
<math>=r'-\frac{2r\rho'cos\phi}{2r'}, \frac{\rho'}{r'}=sin\theta'</math><br><br> | <math>=r'-\frac{2r\rho'cos\phi}{2r'}, \frac{\rho'}{r'}=sin\theta'</math><br><br> | ||
| − | <math>\frac{1}{|\mathbf{r}-\mathbf{r}'|^2} \approx \frac{1}{r'^2}\left(1+\frac{2rsin\theta'cos\phi}{r'}\right)</math | + | <math>\frac{1}{|\mathbf{r}-\mathbf{r}'|^2} \approx \frac{1}{r'^2}\left(1+\frac{2rsin\theta'cos\phi}{r'}\right)</math> |
Revision as of 21:33, 2 July 2009
Determining Angle of First Diffraction Minimum
We start off with Maxwell's Equation in the Lorentz gauge:
where we use the metric signature (+,+,+,-) and
- ,
Lorentz Gauge:
Introduce Green's function at from some impulse source at
Let
Then
Translational symmetry implies:
∴
, where
But,
∴
Chose the "retarded" solution, such that the function is zero unless t>t'
But the term
∴
Now to get the in the half-space with z>0 with the boundary condition at we take the difference:
Now use Green's theorem:
Let
But
, let
Now invoke the divergence theorem on the half space :
, where the last term is zero by the condition of
To do the t integral, I need to bring out the z derivative. To do this, I first turn it into a z' derivative, using the relation:
, where
∴
At ,
If is independent of position, as in a plane wave propagating along the z axis, then:
This gives us uniform translation of waves at velocity c. More generally:
In our case, we consider only those waves which drop off as , so:
In cylindrical coordinates, . Also, . So:
Picture an opaque screen with a circular aperture of radius a.
Let
Then