|
|
| Line 27: |
Line 27: |
| | But the term <math>2\delta(|\mathbf{x}-\mathbf{x}'|+c(t-t'))\rightarrow 0 \quad\forall\quad t>t'</math><br><br> | | But the term <math>2\delta(|\mathbf{x}-\mathbf{x}'|+c(t-t'))\rightarrow 0 \quad\forall\quad t>t'</math><br><br> |
| | ∴<math> G(x,x')=\frac{-1}{4\pi}\quad \frac{\delta(|\mathbf{x}-\mathbf{x}'|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'|}</math><br><br> | | ∴<math> G(x,x')=\frac{-1}{4\pi}\quad \frac{\delta(|\mathbf{x}-\mathbf{x}'|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'|}</math><br><br> |
| − | Now to get the G<sub>1</sub>(x,x') in the half-space with z>0 with the boundary condition G<sub>1</sub> at x<sub>3</sub>=z=0 we take the difference:<br><br> | + | Now to get the <math>G_1(x,x')\quad </math> in the half-space with z>0 with the boundary condition <math>G_1\quad </math> at<math> x_3=z=0 \quad</math> we take the difference:<br><br> |
| | <math>G_1(x,x')=\frac{-1}{4\pi}\left(\frac{\delta(|\mathbf{x}-\mathbf{x}'|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'|}-\frac{\delta(|\mathbf{x}-\mathbf{x}'-2z\hat{e_3}|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'-2z\hat{e_3}|}\right)</math><br><br> | | <math>G_1(x,x')=\frac{-1}{4\pi}\left(\frac{\delta(|\mathbf{x}-\mathbf{x}'|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'|}-\frac{\delta(|\mathbf{x}-\mathbf{x}'-2z\hat{e_3}|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'-2z\hat{e_3}|}\right)</math><br><br> |
| | Now use Green's theorem:<br><br> | | Now use Green's theorem:<br><br> |
| Line 35: |
Line 35: |
| | <math>\nabla^2A(x)=\mu j(x)+\frac{1}{c^2}\frac{\part^2}{\part t^2}A(x)</math>, let <math>j(x)=0 \quad</math><br><br> | | <math>\nabla^2A(x)=\mu j(x)+\frac{1}{c^2}\frac{\part^2}{\part t^2}A(x)</math>, let <math>j(x)=0 \quad</math><br><br> |
| | <math>\int \nabla \cdot \mathbf{F} d^4x=A(x')+\frac{1}{c^2}\int d^4x\left[A\frac{\part^2}{\part t^2}G_1 - G_1\frac{\part^2}{\part t^2}A\right]</math><br><br> | | <math>\int \nabla \cdot \mathbf{F} d^4x=A(x')+\frac{1}{c^2}\int d^4x\left[A\frac{\part^2}{\part t^2}G_1 - G_1\frac{\part^2}{\part t^2}A\right]</math><br><br> |
| − | The last term vanishes if G<sub>1</sub>(x,x')and A(x) fall off sufficiently fast at <math>t\rightarrow\infin</math>. They do. So:<br> | + | The last term vanishes if <math>G_1(x,x')and A(x)\quad </math> fall off sufficiently fast at <math>t\rightarrow\infin</math>. They do. So:<br><br> |
| − | | + | <math>\int \nabla \cdot \mathbf{F} d^4x=A(x')</math><br><br> |
| − | <math>\int \nabla \cdot \mathbf{F} d^4x=A(x')</math><br><br><br> | + | Now invoke the divergence theorem on the half space <math>z>0 \quad</math>:<br><br> |
| − | Now invoke the divergence theorem on the half space <math>z>0 \quad</math>:<br><br><br> | |
| | <math>A(x')=-\int d^2x\int cdt\left[A(x)\frac{\part}{\part t}G_1(x,x')-G_1(x,x')\frac{\part}{\part z}A(x)\right]</math>, where the last term is zero by the constriction of<math>G_1(z=0) \quad</math><br><br> | | <math>A(x')=-\int d^2x\int cdt\left[A(x)\frac{\part}{\part t}G_1(x,x')-G_1(x,x')\frac{\part}{\part z}A(x)\right]</math>, where the last term is zero by the constriction of<math>G_1(z=0) \quad</math><br><br> |
| − | <math>A(x')=-c\int dt\int d^2xA(x)\frac{\part}{\part z}G_1(x,x')</math><br><br><br> | + | <math>A(x')=-c\int dt\int d^2xA(x)\frac{\part}{\part z}G_1(x,x')</math><br><br> |
| | To do the t integral, I need to bring out the z derivative. To do this, I first turn it into a z' derivative, using the relation: <br><br><br> | | To do the t integral, I need to bring out the z derivative. To do this, I first turn it into a z' derivative, using the relation: <br><br><br> |
| | <math>G_1(x,x')=\frac{-1}{4\pi}\left(\frac{\delta(|\mathbf{x}-\mathbf{x}'|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'|}-\frac{\delta(|\mathbf{x}-\mathbf{x}''|-c(t-t'))}{|\mathbf{x}-\mathbf{x}''|}\right)</math>, where <math>\mathbf{x}''=\mathbf{x}'-2z'\hat{e_3}</math><br><br> | | <math>G_1(x,x')=\frac{-1}{4\pi}\left(\frac{\delta(|\mathbf{x}-\mathbf{x}'|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'|}-\frac{\delta(|\mathbf{x}-\mathbf{x}''|-c(t-t'))}{|\mathbf{x}-\mathbf{x}''|}\right)</math>, where <math>\mathbf{x}''=\mathbf{x}'-2z'\hat{e_3}</math><br><br> |
| | <math>\frac{\part}{\part z}G_1(x,x')=\frac{1}{4\pi}\left(\frac{\part}{\part z}\left(\frac{\delta(|\mathbf{x}-\mathbf{x}'|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'|}-\frac{\delta(|\mathbf{x}-\mathbf{x}''|-c(t-t'))}{|\mathbf{x}-\mathbf{x}''|}\right)\right)</math><br><br> | | <math>\frac{\part}{\part z}G_1(x,x')=\frac{1}{4\pi}\left(\frac{\part}{\part z}\left(\frac{\delta(|\mathbf{x}-\mathbf{x}'|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'|}-\frac{\delta(|\mathbf{x}-\mathbf{x}''|-c(t-t'))}{|\mathbf{x}-\mathbf{x}''|}\right)\right)</math><br><br> |
| − | ∴ <math>A(x')=\frac{-1}{4\pi}\frac{\part}{\part z'}\int_{z=0} d^2x\left(2\frac{A(\mathbf{x},t'-\frac{\mathbf{x}-\mathbf{x}'}{c}}{\mathbf{x}-\mathbf{x}'}\right)</math> | + | ∴ <math>A(x')=\frac{-1}{4\pi}\frac{\part}{\part z'}\int_{z=0} d^2x\left(2\frac{A(\mathbf{x},t'-\frac{\mathbf{x}-\mathbf{x}'}{c}}{\mathbf{x}-\mathbf{x}'}\right)</math><br><br> |
| | + | At <math>z=0 \quad </math>, <math>|\mathbf{x}-\mathbf{x}'|=\sqrt{r^2+z'^2}=S, dS=\frac{rdr}{\sqrt{r^2+z'^2}}</math><br><br> |
| | + | If<math>A(\mathbf{x},t) \quad</math> is independent of <math>\mathbf{x} \quad</math>, then:<br><br> |
| | + | <math>A(x')=\frac{-\part}{\part z'}\int_{z'=0}^\infin dS A\left(\mathbf{0},t-\frac{S}{c}\right)=A\left(\mathbf{\emptyset},t'-\frac{z'}{c}\right)</math><br><br> |
| | + | This gives us uniform translations of waves at velocity c. More generally: <br><br> |
| | + | <math>A(x')=\frac{-1}{2\pi}\int_{z=0} d^2x\frac{\part}{\part z'}\left(\frac{A\left(\mathbf{x}, t'-\frac{|\mathbf{x}-\mathbf{x}'|}{c}\right)}{|\mathbf{x}-\mathbf{x}'|}\right)</math><br><br> |
Determining Angle for First Diffraction Minimum
We start off with Maxwell's Equation in the Lorentz gauge:
Where:

Lorentz Gauge: 
Introduce Green's function at (x=t) from some impulse source at x'=(x',t')

Let 
Then 
In free space, translational symmetry implies:

∴

, where 
But, 
∴

Chose the "retarded" solution, such that the function is zero unless t>t'




![{\displaystyle ={\frac {1}{(2\pi )^{2}}}{\frac {2}{|\mathbf {x} -\mathbf {x} '|}}{\frac {2\pi }{4}}\left[2\delta (|\mathbf {x} -\mathbf {x} '|+c(t-t'))-2\delta (|\mathbf {x} -\mathbf {x} '|-c(t-t'))\right]\Theta }](https://wikimedia.org/api/rest_v1/media/math/render/svg/49a5589bd5af5cc12be1c4a9741ef26549f7b6c1)
But the term 
∴
Now to get the
in the half-space with z>0 with the boundary condition
at
we take the difference:

Now use Green's theorem:
Let 
![{\displaystyle \int \mathbf {\nabla } \cdot \mathbf {F} d^{4}x=\int cdt\int d^{3}x[\mathbf {\nabla } A\cdot \mathbf {\nabla } G+A\nabla ^{2}G_{1}-\mathbf {\nabla } G\cdot \mathbf {\nabla } A-G_{1}\nabla ^{2}A]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f5fe0f18d836935d1cc0d1e9a8b3ce7268539426)
But 
, let 
![{\displaystyle \int \nabla \cdot \mathbf {F} d^{4}x=A(x')+{\frac {1}{c^{2}}}\int d^{4}x\left[A{\frac {\partial ^{2}}{\partial t^{2}}}G_{1}-G_{1}{\frac {\partial ^{2}}{\partial t^{2}}}A\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5fcea9b36150eabba8a50f39f374da0533b34e68)
The last term vanishes if
fall off sufficiently fast at
. They do. So:

Now invoke the divergence theorem on the half space
:
, where the last term is zero by the constriction of

To do the t integral, I need to bring out the z derivative. To do this, I first turn it into a z' derivative, using the relation:
, where 

∴ 
At
, 
If
is independent of
, then:

This gives us uniform translations of waves at velocity c. More generally:
