Difference between revisions of "Construction of a Tabletop Michelson Interferometer"

From UConn PAN
Jump to navigation Jump to search
Line 43: Line 43:
 
To do the t integral, I need to bring out the z derivative.  To do this, I first turn it into a z' derivative, using the relation: <br><br><br>
 
To do the t integral, I need to bring out the z derivative.  To do this, I first turn it into a z' derivative, using the relation: <br><br><br>
 
<math>G_1(x,x')=\frac{-1}{4\pi}\left(\frac{\delta(|\mathbf{x}-\mathbf{x}'|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'|}-\frac{\delta(|\mathbf{x}-\mathbf{x}''|-c(t-t'))}{|\mathbf{x}-\mathbf{x}''|}\right)</math>, where <math>\mathbf{x}''=\mathbf{x}'-2z'\hat{e_3}</math><br><br>
 
<math>G_1(x,x')=\frac{-1}{4\pi}\left(\frac{\delta(|\mathbf{x}-\mathbf{x}'|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'|}-\frac{\delta(|\mathbf{x}-\mathbf{x}''|-c(t-t'))}{|\mathbf{x}-\mathbf{x}''|}\right)</math>, where <math>\mathbf{x}''=\mathbf{x}'-2z'\hat{e_3}</math><br><br>
<math>\frac{\part}{\part z}G_1(x,x')=\frac{1}{4\pi}\left(\frac{\part}{\part z}\left(\frac{\delta(|\mathbf{x}-\mathbf{x}'|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'|}-\frac{\delta(|\mathbf{x}-\mathbf{x}''|-c(t-t'))}{|\mathbf{x}-\mathbf{x}''|}\right)\right)</math>,
+
<math>\frac{\part}{\part z}G_1(x,x')=\frac{1}{4\pi}\left(\frac{\part}{\part z}\left(\frac{\delta(|\mathbf{x}-\mathbf{x}'|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'|}-\frac{\delta(|\mathbf{x}-\mathbf{x}''|-c(t-t'))}{|\mathbf{x}-\mathbf{x}''|}\right)\right)</math><br><br>
&there4; <math>A(x')=\frac{-1}{4\pi}\frac{\part}{\part z'}\int_{z=0} d^2x\left(2\frac{A(\mathbf{x},t'-\frac{\mathbf{x}-\mathbf{x}'}{c}}{\mathbf{x}-\mathbf{x}'}\right)</math?
+
&there4; <math>A(x')=\frac{-1}{4\pi}\frac{\part}{\part z'}\int_{z=0} d^2x\left(2\frac{A(\mathbf{x},t'-\frac{\mathbf{x}-\mathbf{x}'}{c}}{\mathbf{x}-\mathbf{x}'}\right)</math>
 
 
</math>
 

Revision as of 18:28, 2 July 2009

Determining Angle for First Diffraction Minimum

We start off with Maxwell's Equation in the Lorentz gauge:

Where:

Lorentz Gauge:

Introduce Green's function at (x=t) from some impulse source at x'=(x',t')



Let

Then

In free space, translational symmetry implies:






, where
But,



Chose the "retarded" solution, such that the function is zero unless t>t'










But the term



Now to get the G1(x,x') in the half-space with z>0 with the boundary condition G1 at x3=z=0 we take the difference:



Now use Green's theorem:

Let



But

, let



The last term vanishes if G1(x,x')and A(x) fall off sufficiently fast at . They do. So:




Now invoke the divergence theorem on the half space :


, where the last term is zero by the constriction of




To do the t integral, I need to bring out the z derivative. To do this, I first turn it into a z' derivative, using the relation:


, where