|
|
| Line 32: |
Line 32: |
| | But the term <math>2\delta(|\mathbf{x}-\mathbf{x}'|+c(t-t'))\rightarrow 0 \quad\forall\quad t>t'</math><br><br> | | But the term <math>2\delta(|\mathbf{x}-\mathbf{x}'|+c(t-t'))\rightarrow 0 \quad\forall\quad t>t'</math><br><br> |
| | ∴<math> G(x,x')=\frac{-1}{4\pi}\quad \frac{\delta(|\mathbf{x}-\mathbf{x}'|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'|}</math><br><br> | | ∴<math> G(x,x')=\frac{-1}{4\pi}\quad \frac{\delta(|\mathbf{x}-\mathbf{x}'|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'|}</math><br><br> |
| − | Now to get the G<sub>1</sub>(x,x') in the half-space with z>0 with the boundary condition G<sub>1</sub> at x<sub>3</sub>=z=0 we take the difference:<br> | + | Now to get the G<sub>1</sub>(x,x') in the half-space with z>0 with the boundary condition G<sub>1</sub> at x<sub>3</sub>=z=0 we take the difference:<br><br> |
| | <math>G_1(x,x')=\frac{-1}{4\pi}\left(\frac{\delta(|\mathbf{x}-\mathbf{x}'|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'|}-\frac{\delta(|\mathbf{x}-\mathbf{x}'-2z\hat{e_3}|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'-2z\hat{e_3}|}\right)</math><br><br> | | <math>G_1(x,x')=\frac{-1}{4\pi}\left(\frac{\delta(|\mathbf{x}-\mathbf{x}'|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'|}-\frac{\delta(|\mathbf{x}-\mathbf{x}'-2z\hat{e_3}|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'-2z\hat{e_3}|}\right)</math><br><br> |
| − | Now use Green's theorem:<br> | + | Now use Green's theorem:<br><br> |
| | Let <math>\mathbf{F}=A(x)\mathbf{\nabla}G_1(x,x')-G_1(x,x')\mathbf{\nabla}A(x)</math><br><br> | | Let <math>\mathbf{F}=A(x)\mathbf{\nabla}G_1(x,x')-G_1(x,x')\mathbf{\nabla}A(x)</math><br><br> |
| | <math>\int \mathbf{\nabla} \cdot \mathbf{F}d^4x= \int cdt \int d^3x[\mathbf{\nabla}A \cdot \mathbf{\nabla}G+A\nabla^2G_1-\mathbf{\nabla}G \cdot \mathbf{\nabla}A -G_1\nabla^2A]</math><br><br> | | <math>\int \mathbf{\nabla} \cdot \mathbf{F}d^4x= \int cdt \int d^3x[\mathbf{\nabla}A \cdot \mathbf{\nabla}G+A\nabla^2G_1-\mathbf{\nabla}G \cdot \mathbf{\nabla}A -G_1\nabla^2A]</math><br><br> |
| Line 40: |
Line 40: |
| | <math>\nabla^2A(x)=\mu j(x)+\frac{1}{c^2}\frac{\part^2}{\part t^2}A(x)</math>, let <math>j(x)=0 \quad</math><br><br> | | <math>\nabla^2A(x)=\mu j(x)+\frac{1}{c^2}\frac{\part^2}{\part t^2}A(x)</math>, let <math>j(x)=0 \quad</math><br><br> |
| | <math>\int \nabla \cdot \mathbf{F} d^4x=A(x')+\frac{1}{c^2}\int d^4x\left[A\frac{\part^2}{\part t^2}G_1 - G_1\frac{\part^2}{\part t^2}A\right]</math><br><br> | | <math>\int \nabla \cdot \mathbf{F} d^4x=A(x')+\frac{1}{c^2}\int d^4x\left[A\frac{\part^2}{\part t^2}G_1 - G_1\frac{\part^2}{\part t^2}A\right]</math><br><br> |
| − | The last term vanishes if G<sub>1</sub>(x,x')and A(x) fall off sufficiently fast at t | + | The last term vanishes if G<sub>1</sub>(x,x')and A(x) fall off sufficiently fast at <math>t\rightarrow\infin</math>. They do. So:<br> |
| | + | |
| | + | <math>\int \nabla \cdot \mathbf{F} d^4x=A(x')</math><br> |
| | + | Now invoke the divergence theorem on the half space <math>z>0 \quad</math>:<br><br> |
| | + | <math>A(x')=-\int d^2x\int cdt\left[A(x)\frac{\part}{\part t}G_1(x,x')-G_1(x,x')\frac{\part}{\part z}A(x)\right]</math>, where the last term is zero by the constriction of<math>G_1(z=0) \quad</math><br><br> |
| | + | <math>A(x')=-c\int dt\int d^2xA(x)\frac{\part}{\part z}G_1(x,x')<math><br><br> |
| | + | To do the t integral, I need to bring out the z derivative. To do this, I first turn it into a z' derivative, using the relation: <br> |
| | + | <math>G_1(x,x')=\frac{-1}{4\pi}\left(\frac{\delta(|\mathbf{x}-\mathbf{x}'|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'|}-\frac{\delta(|\mathbf{x}-\mathbf{x}''c(t-t'))}{|\mathbf{x}-\mathbf{x}''\right)</math>, where <math>\mathbf{x}''=\mathbf{x}'-2z'\hat{e_3}</math> |
Determining Angle for First Diffraction Minimum
We start off with Maxwell's Equation in the Lorentz gauge:
Where:
Lorentz Gauge:
Introduce Green's function at (x=t) from some impulse source at x'=(x',t')
Let
Then
In free space, translational symmetry implies:
∴

, where 
But, 
∴

Chose the "retarded" solution, such that the function is zero unless t>t'




![{\displaystyle ={\frac {1}{(2\pi )^{2}}}{\frac {2}{|\mathbf {x} -\mathbf {x} '|}}{\frac {2\pi }{4}}\left[2\delta (|\mathbf {x} -\mathbf {x} '|+c(t-t'))-2\delta (|\mathbf {x} -\mathbf {x} '|-c(t-t'))\right]\Theta }](https://wikimedia.org/api/rest_v1/media/math/render/svg/49a5589bd5af5cc12be1c4a9741ef26549f7b6c1)
But the term 
∴
Now to get the G1(x,x') in the half-space with z>0 with the boundary condition G1 at x3=z=0 we take the difference:

Now use Green's theorem:
Let 
![{\displaystyle \int \mathbf {\nabla } \cdot \mathbf {F} d^{4}x=\int cdt\int d^{3}x[\mathbf {\nabla } A\cdot \mathbf {\nabla } G+A\nabla ^{2}G_{1}-\mathbf {\nabla } G\cdot \mathbf {\nabla } A-G_{1}\nabla ^{2}A]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f5fe0f18d836935d1cc0d1e9a8b3ce7268539426)
But 
, let 
![{\displaystyle \int \nabla \cdot \mathbf {F} d^{4}x=A(x')+{\frac {1}{c^{2}}}\int d^{4}x\left[A{\frac {\partial ^{2}}{\partial t^{2}}}G_{1}-G_{1}{\frac {\partial ^{2}}{\partial t^{2}}}A\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5fcea9b36150eabba8a50f39f374da0533b34e68)
The last term vanishes if G1(x,x')and A(x) fall off sufficiently fast at
. They do. So:

Now invoke the divergence theorem on the half space
:
, where the last term is zero by the constriction of
Failed to parse (syntax error): {\displaystyle A(x')=-c\int dt\int d^2xA(x)\frac{\part}{\part z}G_1(x,x')<math><br><br> To do the t integral, I need to bring out the z derivative. To do this, I first turn it into a z' derivative, using the relation: <br> <math>G_1(x,x')=\frac{-1}{4\pi}\left(\frac{\delta(|\mathbf{x}-\mathbf{x}'|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'|}-\frac{\delta(|\mathbf{x}-\mathbf{x}''c(t-t'))}{|\mathbf{x}-\mathbf{x}''\right)}
, where