Difference between revisions of "Construction of a Tabletop Michelson Interferometer"
Jump to navigation
Jump to search
| Line 31: | Line 31: | ||
<math>=\frac{1}{(2\pi)^2}\frac{2}{|\mathbf{x}-\mathbf{x}'|}\frac{2\pi}{4} \left[2\delta(|\mathbf{x}-\mathbf{x}'|+c(t-t'))-2\delta(|\mathbf{x}-\mathbf{x}'|-c(t-t'))\right]\Theta</math><br><br> | <math>=\frac{1}{(2\pi)^2}\frac{2}{|\mathbf{x}-\mathbf{x}'|}\frac{2\pi}{4} \left[2\delta(|\mathbf{x}-\mathbf{x}'|+c(t-t'))-2\delta(|\mathbf{x}-\mathbf{x}'|-c(t-t'))\right]\Theta</math><br><br> | ||
But the term <math>2\delta(|\mathbf{x}-\mathbf{x}'|+c(t-t'))\rightarrow 0 \quad\forall\quad t>t'</math><br><br> | But the term <math>2\delta(|\mathbf{x}-\mathbf{x}'|+c(t-t'))\rightarrow 0 \quad\forall\quad t>t'</math><br><br> | ||
| − | ∴<math> G(x,x')=\frac{-1}{4\pi}\quad \frac{\delta(|\mathbf{x}-\mathbf{x}'|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'|}</math><br> | + | ∴<math> G(x,x')=\frac{-1}{4\pi}\quad \frac{\delta(|\mathbf{x}-\mathbf{x}'|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'|}</math><br><br> |
| + | Now to get the G<sub>1</sub>(x,x') in the half-space with z>0 with the boundary condition G<sub>1</sub> at x<sub>3</sub>=z=0 we take the difference:<br> | ||
| + | <math>G_1(x,x')=\frac{-1}{4\pi}\left(\frac{\delta(|\mathbf{x}-\mathbf{x}'|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'|}-\frac{\delta(|\mathbf{x}-\mathbf{x}'-2z\hat{e_3}|-c(t-t'))}{|\mathbf{x}-\mathbf{x}'-2z\hat{e_3}|}\right)</math><br><br> | ||
| + | Now use Green's theorem:<br> | ||
| + | Let<math>\mathbf{F}=A(x)\mathbf{\nabla}G_1(x,x')-G_1(x,x')\mathbf{\nabla}A(x) | ||
| + | |||
| + | </math> | ||
Revision as of 17:42, 2 July 2009
Determining Angle for First Diffraction Minimum
We start off with Maxwell's Equation in the Lorentz gauge:
Where:
Lorentz Gauge:
Introduce Green's function at (x=t) from some impulse source at x'=(x',t')
Let
Then
In free space, translational symmetry implies:
∴
, where
But,
∴
Chose the "retarded" solution, such that the function is zero unless t>t'
But the term
∴
Now to get the G1(x,x') in the half-space with z>0 with the boundary condition G1 at x3=z=0 we take the difference:
Now use Green's theorem:
Let