Difference between revisions of "Construction of a Tabletop Michelson Interferometer"

From UConn PAN
Jump to navigation Jump to search
Line 26: Line 26:
 
Chose the "retarded" solution, such that the function is zero unless t>t'<br>
 
Chose the "retarded" solution, such that the function is zero unless t>t'<br>
 
<math>G(x,x')=\frac{1}{(2\pi)^4}\int d^3ke^{-i\mathbf{k}(x-x')}\int d(\frac{\omega}{c}) \frac{e^{i\omega(t-t')}}{(\frac{\omega}{c}-k)(\frac{\omega}{c}+k)}\Theta</math><br>
 
<math>G(x,x')=\frac{1}{(2\pi)^4}\int d^3ke^{-i\mathbf{k}(x-x')}\int d(\frac{\omega}{c}) \frac{e^{i\omega(t-t')}}{(\frac{\omega}{c}-k)(\frac{\omega}{c}+k)}\Theta</math><br>
 +
<math>=\frac{1}{(2\pi)^4}\int d^3ke^{-i\mathbf{k}(x-x')}(2\pi i  \frac{e^{ick(t-t')}-e^{-ick(t-t')}}{2k)})\Theta
 +
 +
</math>

Revision as of 15:56, 2 July 2009

Determining Angle for First Diffraction Minimum

We start off with Maxwell's Equation in the Lorentz gauge:

Where:

Lorentz Gauge:

Introduce Green's function at (x=t) from some impulse source at x'=(x',t')

Let

Then

In free space, translational symmetry implies:



, where
But,


Chose the "retarded" solution, such that the function is zero unless t>t'