Difference between revisions of "Construction of a Tabletop Michelson Interferometer"
Jump to navigation
Jump to search
| Line 26: | Line 26: | ||
Chose the "retarded" solution, such that the function is zero unless t>t'<br> | Chose the "retarded" solution, such that the function is zero unless t>t'<br> | ||
<math>G(x,x')=\frac{1}{(2\pi)^4}\int d^3ke^{-i\mathbf{k}(x-x')}\int d(\frac{\omega}{c}) \frac{e^{i\omega(t-t')}}{(\frac{\omega}{c}-k)(\frac{\omega}{c}+k)}\Theta</math><br> | <math>G(x,x')=\frac{1}{(2\pi)^4}\int d^3ke^{-i\mathbf{k}(x-x')}\int d(\frac{\omega}{c}) \frac{e^{i\omega(t-t')}}{(\frac{\omega}{c}-k)(\frac{\omega}{c}+k)}\Theta</math><br> | ||
| + | <math>=\frac{1}{(2\pi)^4}\int d^3ke^{-i\mathbf{k}(x-x')}(2\pi i \frac{e^{ick(t-t')}-e^{-ick(t-t')}}{2k)})\Theta | ||
| + | |||
| + | </math> | ||
Revision as of 15:56, 2 July 2009
Determining Angle for First Diffraction Minimum
We start off with Maxwell's Equation in the Lorentz gauge:
Where:
Lorentz Gauge:
Introduce Green's function at (x=t) from some impulse source at x'=(x',t')
Let
Then
In free space, translational symmetry implies:
∴
, where
But,
∴
Chose the "retarded" solution, such that the function is zero unless t>t'