Difference between revisions of "Construction of a Tabletop Michelson Interferometer"
Jump to navigation
Jump to search
| Line 9: | Line 9: | ||
Lorentz Gauge: <math>A^\mu = 0 \rArr \mathbf{\nabla} \cdot \mathbf{A}+\frac{1}{c^2} \frac{\part\Phi}{\part t}=0</math> | Lorentz Gauge: <math>A^\mu = 0 \rArr \mathbf{\nabla} \cdot \mathbf{A}+\frac{1}{c^2} \frac{\part\Phi}{\part t}=0</math> | ||
| − | Introduce Green's function at (x=t) from some impulse source at x'=(<b>x'</b>,t') | + | Introduce Green's function at (x=t) from some impulse source at x'=(<b>x'</b>,t')<br> |
<math>\square^2_xG(x,x')=\delta^4(x-x')</math> | <math>\square^2_xG(x,x')=\delta^4(x-x')</math> | ||
| Line 17: | Line 17: | ||
In free space, translational symmetry implies:<br> | In free space, translational symmetry implies:<br> | ||
| − | <math>G(x-x',0)=G(x,x')</math> | + | <math>G(x-x',0)=G(x,x') \quad </math> |
| − | ∴<math> G(x,x')=\frac{1}{(2\pi)^2}\int d^4q e^{-iq(x-x')} \tilde{G} (q)</math><br> | + | ∴<math> G(x,x')=\frac{1}{(2\pi)^2}\int d^4q e^{-iq(x-x')} \tilde{G} (q)</math><br> <math>\square^2_xG(x,x')=\frac{1}{(2\pi)^2}|int d^4qe^{-iq(x-x')}\tilde{G}(q)</math><br> |
| + | <math>\square^2_xG(x,x')=\frac{1}{(2\pi)^2}\int d^4qe^{-iq(x-x')}(-k^2+\frac{\omega^2}{c^2})</math>, where <math>q=(\mathbf{k},\frac{\omega}{c}) \quad</math><br> | ||
| + | But, <math>\square^2_xG(x,x')=\delta^4(x-x')=\frac{1}{(2\pi)^4}\int d^4q e^{-iq(x-x')}</math><br> | ||
| + | &there4<math>\tilde{G}(q)=\frac{(2\pi)^2}{(2\pi)^4}\frac{1}{-q^2}= \frac{-1}{(2\pi)^2q^2}</math><br> | ||
Revision as of 15:37, 2 July 2009
Determining Angle for First Diffraction Minimum
We start off with Maxwell's Equation in the Lorentz gauge:
Where:
Lorentz Gauge:
Introduce Green's function at (x=t) from some impulse source at x'=(x',t')
Let
Then
In free space, translational symmetry implies:
∴
, where
But,
&there4