| Line 4: |
Line 4: |
| | | | |
| | {|align=center | | {|align=center |
| − | |Gauss' Law:|Gauss' Law for Magnetism: | + | |Gauss' Law: |
| | + | |Gauss' Law for Magnetism: |
| | |- | | |- |
| | |<math>\boldsymbol{\nabla \cdot E} = 0 </math> | | |<math>\boldsymbol{\nabla \cdot E} = 0 </math> |
| | |<math>\boldsymbol{\nabla \cdot B} = 0</math> | | |<math>\boldsymbol{\nabla \cdot B} = 0</math> |
| | |- | | |- |
| − | |Faradays's Law:|Ampere's Law: | + | |height="20"| || |
| | |- | | |- |
| − | |<math>\boldsymbol{\nabla \times E} + \frac{\partial \boldsymbol{B}}{\partial t}= 0</math> | + | |Faradays's Law: |
| − | |<math>\boldsymbol{\nabla \times B} - \mu_0\epsilon_0\frac{\partial \boldsymbol{E}}{\partial t}= 0 </math> | + | |Ampere's Law: |
| | + | |- |
| | + | |width="400"|<math>\boldsymbol{\nabla \times E} + \frac{\partial \boldsymbol{B}}{\partial t}= 0</math> |
| | + | |width="400"|<math>\boldsymbol{\nabla \times B} - \mu_0\epsilon_0\frac{\partial \boldsymbol{E}}{\partial t}= 0 </math> |
| | |} | | |} |
| | | | |
| − | == In the presence of charges and dielectric media == | + | == In the Presence of Charges and Dielectric Media == |
| − | <font color="red">Need to add possibly derivation of wave equation and definitely Maxwell's equation in presence. Need also to introduce D and H and relate them to E and B.</font>
| |
| | | | |
| − | Gauss' Law: | + | {|align=center |
| − | | + | |Gauss' Law: |
| − | <math>\boldsymbol{\nabla \cdot D} = \rho </math> | + | |Gauss' Law for Magnetism: |
| − | | + | |- |
| − | Gauss' Law for Magnetism:
| + | |<math>\boldsymbol{\nabla \cdot D} = \rho </math> |
| − | | + | |<math>\boldsymbol{\nabla \cdot B} = 0</math> |
| − | <math>\boldsymbol{\nabla \cdot B} = 0</math> | + | |- |
| − | | + | |height="20"| || |
| − | Faradays's Law: | + | |- |
| − | | + | |Faradays's Law: |
| − | <math>\boldsymbol{\nabla \times E} + \frac{\partial \boldsymbol{B}}{\partial t}= 0</math> | + | |Ampere's Law: |
| − | | + | |- |
| − | Ampere's Law:
| + | |width="400"|<math>\boldsymbol{\nabla \times E} + \frac{\partial \boldsymbol{B}}{\partial t}= 0</math> |
| − | | + | |width="400"|<math>\boldsymbol{\nabla \times H} - \frac{\partial \boldsymbol{D}}{\partial t}= \boldsymbol{j} </math> |
| − | <math>\boldsymbol{\nabla \times H} - \frac{\partial \boldsymbol{D}}{\partial t}= \boldsymbol{j} </math> | + | |} |
| | | | |
| | | | |
| − | Back to [[Mapping diamond surfaces using interference]]
| + | Where <math>\boldsymbol{D} = \epsilon_0 \boldsymbol{E}</math> and <math>\boldsymbol{B} = \mu_0 \boldsymbol{H}</math>. |