Changes

Jump to navigation Jump to search
518 bytes added ,  02:52, 6 April 2007
no edit summary
Line 3: Line 3:  
These are the Maxwell's Equations we will be using to solve for regions "I" and "II" in our approximation of the Michelson interferometer.
 
These are the Maxwell's Equations we will be using to solve for regions "I" and "II" in our approximation of the Michelson interferometer.
   −
Gauss' Law:
+
{|align=center
 +
|Gauss' Law:
 +
|Gauss' Law for Magnetism:
 +
|-
 +
|<math>\boldsymbol{\nabla \cdot E} = 0 </math>
 +
|<math>\boldsymbol{\nabla \cdot B} = 0</math>
 +
|-
 +
|height="20"|&nbsp;||&nbsp;
 +
|-
 +
|Faradays's Law:
 +
|Ampere's Law:
 +
|-
 +
|width="400"|<math>\boldsymbol{\nabla \times E} + \frac{\partial \boldsymbol{B}}{\partial t}= 0</math>
 +
|width="400"|<math>\boldsymbol{\nabla \times B} - \mu_0\epsilon_0\frac{\partial \boldsymbol{E}}{\partial t}= 0 </math>
 +
|}
   −
<math>\boldsymbol{\nabla \cdot E} = 0 </math>
+
== In the Presence of Charges and Dielectric Media ==
   −
Gauss' Law for Magnetism:
+
{|align=center
 
+
|Gauss' Law:
<math>\boldsymbol{\nabla \cdot B} = 0</math>  
+
|Gauss' Law for Magnetism:
 +
|-
 +
|<math>\boldsymbol{\nabla \cdot D} = \rho </math>
 +
|<math>\boldsymbol{\nabla \cdot B} = 0</math>  
 +
|-
 +
|height="20"|&nbsp;||&nbsp;
 +
|-
 +
|Faradays's Law:
 +
|Ampere's Law:
 +
|-
 +
|width="400"|<math>\boldsymbol{\nabla \times E} + \frac{\partial \boldsymbol{B}}{\partial t}= 0</math>
 +
|width="400"|<math>\boldsymbol{\nabla \times H} - \frac{\partial \boldsymbol{D}}{\partial t}= \boldsymbol{j} </math>
 +
|}
   −
Faradays's Law:
     −
<math>\boldsymbol{\nabla \times E} + \frac{\partial \boldsymbol{B}}{\partial t}= 0</math>  
+
Where <math>\boldsymbol{D} = \epsilon_0 \boldsymbol{E}</math> and <math>\boldsymbol{B} = \mu_0 \boldsymbol{H}</math>.
 
  −
Ampere's Law:
  −
 
  −
\begin{center}
  −
<math>\boldsymbol{\nabla \times B} - \mu_0\epsilon_0\frac{\partial \boldsymbol{E}}{\partial t}= 0 </math>
  −
\end{center}
  −
 
  −
{| class="wikitable" style="margin: 1em auto 1em auto"
  −
|<math>\vec{\nabla}\times\vec{D}=\frac{\rho_{ext}}{\epsilon_0}</math>
  −
|align="right" width="200"| (1)
  −
|}
 
1,845

edits

Navigation menu