| Line 1: |
Line 1: |
| | == In Free Space == | | == In Free Space == |
| − | Gauss' Law:
| |
| | | | |
| − | <math>\boldsymbol{\nabla \cdot E} = 0 </math>
| + | These are the Maxwell's Equations we will be using to solve for regions "I" and "II" in our approximation of the Michelson interferometer. |
| | | | |
| − | Gauss' Law for Magnetism: | + | {|align=center |
| | + | |Gauss' Law: |
| | + | |Gauss' Law for Magnetism: |
| | + | |- |
| | + | |<math>\boldsymbol{\nabla \cdot E} = 0 </math> |
| | + | |<math>\boldsymbol{\nabla \cdot B} = 0</math> |
| | + | |- |
| | + | |height="20"| || |
| | + | |- |
| | + | |Faradays's Law: |
| | + | |Ampere's Law: |
| | + | |- |
| | + | |width="400"|<math>\boldsymbol{\nabla \times E} + \frac{\partial \boldsymbol{B}}{\partial t}= 0</math> |
| | + | |width="400"|<math>\boldsymbol{\nabla \times B} - \mu_0\epsilon_0\frac{\partial \boldsymbol{E}}{\partial t}= 0 </math> |
| | + | |} |
| | | | |
| − | <math>\boldsymbol{\nabla \cdot B} = 0</math>
| + | == In the Presence of Charges and Dielectric Media == |
| | | | |
| − | Faradays's Law: | + | {|align=center |
| − | <math>\boldsymbol{\nabla \times E} + \frac{\partial \boldsymbol{B}}} {\partial t}= #0</math> | + | |Gauss' Law: |
| | + | |Gauss' Law for Magnetism: |
| | + | |- |
| | + | |<math>\boldsymbol{\nabla \cdot D} = \rho </math> |
| | + | |<math>\boldsymbol{\nabla \cdot B} = 0</math> |
| | + | |- |
| | + | |height="20"| || |
| | + | |- |
| | + | |Faradays's Law: |
| | + | |Ampere's Law: |
| | + | |- |
| | + | |width="400"|<math>\boldsymbol{\nabla \times E} + \frac{\partial \boldsymbol{B}}{\partial t}= 0</math> |
| | + | |width="400"|<math>\boldsymbol{\nabla \times H} - \frac{\partial \boldsymbol{D}}{\partial t}= \boldsymbol{j} </math> |
| | + | |} |
| | + | |
| | + | |
| | + | Where <math>\boldsymbol{D} = \epsilon_0 \boldsymbol{E}</math> and <math>\boldsymbol{B} = \mu_0 \boldsymbol{H}</math>. |