Fuse widths are the maximum thickness of a fiber at the fuse site between the scintillating fiber and the upstream end of the waveguide. The fusing process typically creates a slight bulge around the interface, which can interfere with bundling in the detectors. All fuse widths were measured as a part of the fusing procedure. Histogram F shows the distribution of fuse widths among all fused fibers (321 out of 360). The fibers average a fuse width of about 2.08mm, which puts sixty one percent of the fibers (196 fibers) over the originally planned the maximum width of (2.05mm). Using a more lenient maximum width of 2.15mm, only thirteen percent of fibers (43 fibers) fall out of the acceptable range. Even though many of the fibers have a large fuse joint, they shouldn't be counted as unusable since these joints can be sanded down without large losses of light yield. [[File:Fused Spread.png|450px|thumb|right|Histogram F: Fused Width Spread.]]
+
Fuse widths are the maximum thickness of a fiber at the fuse site between the scintillating fiber and the upstream end of the waveguide. The fusing process typically creates a slight bulge around the interface, which can interfere with bundling in the detectors. All fuse widths were measured as a part of the fusing procedure. Histogram F shows the distribution of fuse widths among all fused fibers (321 out of 360). The fibers average a fuse width of about 2.08mm, which puts sixty one percent of the fibers (196 fibers) over the originally planned maximum width of (2.05mm). Using a more lenient maximum width of 2.15mm, only thirteen percent of fibers (43 fibers) fall out of the acceptable range. Even though many of the fibers have a large fuse joint, they shouldn't be counted as unusable since these joints can be sanded down without large losses of light yield. [[File:Fused Spread.png|450px|thumb|right|Histogram F: Fused Width Spread.]]