Line 44: |
Line 44: |
| σ<sub>i</sub>=1. An integral over such events is then a weighted sum of such samples, | | σ<sub>i</sub>=1. An integral over such events is then a weighted sum of such samples, |
| having therefore a contribution to the variance: | | having therefore a contribution to the variance: |
| + | |
| <math> | | <math> |
| \sigma_{MC}^2= | | \sigma_{MC}^2= |
Line 59: |
Line 60: |
| \sum_{\alpha,\beta,\alpha',\beta'}^n{ | | \sum_{\alpha,\beta,\alpha',\beta'}^n{ |
| u_\alpha u_\beta^* u_{\alpha'} u_{\beta'}^* | | u_\alpha u_\beta^* u_{\alpha'} u_{\beta'}^* |
− | \frac{1}{N_{gen}^2} \sum_i^N{ | + | \left[ \frac{1}{N_{gen}^2} \sum_i^N{ |
| A_\alpha^{\gamma \delta}(x_i) A_\beta^{\gamma \delta *}(x_i) | | A_\alpha^{\gamma \delta}(x_i) A_\beta^{\gamma \delta *}(x_i) |
| A_{\alpha'}^{\gamma' \delta'}(x_i) A_{\beta'}^{\gamma' \delta' *}(x_i) | | A_{\alpha'}^{\gamma' \delta'}(x_i) A_{\beta'}^{\gamma' \delta' *}(x_i) |
| } | | } |
| + | \right] |
| } | | } |
| } | | } |
| + | </math> |
| + | |
| + | The relevant piece to pre-compute over the event set for error calculation is shown in brackets. |
| + | Turning our attention now to the contribution to error on the production parameters ''u'': |
| + | |
| + | <math> |
| + | \sigma_{fit}^2= |
| + | \sum_{k,l}^n{ \sigma_{u_k}\sigma_{u_l} |
| + | \frac{\partial}{\partial u_k}\left( |
| + | \sum_{\gamma,\delta}{\rho_{\gamma\delta} |
| + | \sum_{\alpha,\beta}^n{ |
| + | u_\alpha u_\beta^* |
| + | \left[ \frac{1}{N_{gen}}\sum_i^N{ |
| + | A_\alpha^{\gamma \delta}(x_i) A_\beta^{\gamma \delta *}(x_i) |
| + | } |
| + | \right] |
| + | } |
| + | } |
| + | \right) |
| + | \frac{\partial}{\partial u_l} |
| + | \sum_{\gamma,\delta}{\rho_{\gamma\delta} |
| + | \sum_{\alpha,\beta}^n{ |
| + | u_\alpha u_\beta^* |
| + | \left[ \frac{1}{N_{gen}}\sum_i^N{ |
| + | A_\alpha^{\gamma \delta}(x_i) A_\beta^{\gamma \delta *}(x_i) |
| + | } |
| + | \right] |
| + | } |
| + | } |
| + | \right) |
| + | } |
| + | |
| </math> | | </math> |