Changes

Jump to navigation Jump to search
m
no edit summary
Line 1: Line 1: −
Let's begin with the amplitude for decay of a state X with some <math>J_X,M_X</math> quantum numbers:
+
=== Angular Distribution of Two-Body Decay ===
    +
Let's begin with a general amplitude for the two-body decay of a state with angular momentum quantum numbers ''J'',''m''. Specifically, we want to know the amplitude of this state having daughter 1 with trajectory <math>\Omega=(\phi,\theta)</math>.
 +
We can also describe the angular momentum between the daughters as being ''L'' and spin sum as ''s''. Alternatively, we will label the daughters as having helicities of <math>\lambda_1</math> and <math>\lambda_2</math> or direction of decay (specified by daughter 1) of
 +
 +
<table>
 +
<tr>
 +
<td><math>
 +
\langle \Omega \lambda_1 \lambda_2 | U | J m \rangle
 +
=
 +
\sum_{L,S}
 +
\langle \Omega \lambda_1 \lambda_2
 +
| J m \lambda_1 \lambda_2 \rangle \langle J m \lambda_1 \lambda_2 |
 +
J m L S \rangle \langle J m L S |
 +
U | J m \rangle
 +
</math></td>
 +
<td>
 +
simple insertion of complete sets of states for recoupling
 +
</td>
 +
</tr>
 +
 +
<tr>
 +
<td><math>
 +
=\sum_{L,S}
 +
\left[ \sqrt{\frac{2J+1}{4\pi}} D_{m \lambda}^{J *}(\Omega,0) \right]
 +
\left[ \sqrt{\frac{2L+1}{2J+1}} 
 +
\left(\begin{array}{cc|c}
 +
L & S      & J \\
 +
0 & \lambda & \lambda
 +
\end{array}\right)
 +
\left(\begin{array}{cc|c}
 +
S_1      &  S_2      & S \\
 +
\lambda_1 & -\lambda_2 & \lambda
 +
\end{array}\right)
 +
\right]
 +
a_{L S}^{J}
 +
</math></td>
 +
<td>
 +
Substitution of each bra-ket with their respective formulae.
 +
<math>\lambda=\lambda_1-\lambda_2</math>
 +
Note that in the event of one daughter being spin-less, the second
 +
Clebsch-Gordan coefficient is 1
 +
</td>
 +
</tr>
 +
 +
</table>
 +
 +
 +
=== Isospin Projections ===
 +
 +
One must also take into account the various ways isospin of daughters can add up to the isospin quantum numbers of the parent, requiring a term:
    
<math>
 
<math>
\langle   
+
C^{a,b} =
\Omega_X 0 \lambda_{b_1} | U_X | J_X m_X
+
\left(\begin{array}{cc|c}
\rangle
+
I^a    &  I^b  &  I \\
=
+
I_z^a & I_z^b & I_z^a+I_z^b
\langle   
+
\end{array}\right)
\Omega_X 0 \lambda_{b_1}|J_X m_X L_X s_{b_1} \rangle \langle J_X m_X L_X s_{b_1} | U_X | J_X m_X
+
</math>
\rangle
+
 
 +
where ''a=1'' and ''b=2'', referring to the daughter number. Because an even-symmetric angular wave function (i.e. L=0,2...) imply that 180 degree rotation is equivalent to reversal of daughter identities, ''a,b'' becoming ''b,a'' on must write down the symmetrized expression:
 +
 
 +
<math>
 +
C=\frac{1}{\sqrt{2}} \left[ C^{a,b} + (-1)^L C^{b,a} \right]
 
</math>
 
</math>
 +
     
1,004

edits

Navigation menu