Changes

Jump to navigation Jump to search
6 bytes added ,  22:00, 17 December 2009
m
Line 130: Line 130:     
==== Backplane ====
 
==== Backplane ====
The backplane design, version 1.0, has also been completed. Sierra Circuits will be manufacturing the backplane, which we will assemble ourselves. The backplane is a particularly intersting PCB from a manufacturing standpoint, because it is designed to be completely light proof. Since the backplane is the only material standing between the whole of Hall D and the inside of the tagger microscope dark box, opacity of the board is particularly important.
+
The backplane design, version 1.0, has also been completed. Sierra Circuits will be manufacturing the backplane, which we will assemble ourselves. The backplane is a particularly interesting PCB from a manufacturing standpoint, because it is designed to be completely light proof. Since the backplane is the only material standing between the whole of Hall D and the inside of the tagger microscope dark box, opacity of the board is particularly important.
   −
Most PCBs with internal copper layers are already fairly opaque, because the copper blocks light from transmitting through the FR-4 and prepreg. Through hole components do not particulary compromise board opacity, because they are plugged with component pins and solder. What does have a greater affect on the opaqueness of a board, however, is the thermal reliefs by which through hole pins and vias connect to internal plane layers. These reliefs are designed to aid in the soldering process by minimizing the amount of copper that is directly connected to the plating in the hole. A typical relief consists of four 7-10 mil traces connecting the hole's plating to the internal plane. The plane itself remains about 20 mil away from the hole, to prevent conduction of heat during the soldering process. Unfortunately, this means that there is a small gap in which there is only FR-4 to stop light from passing through the board. Since FR-4 is transparent, this poses a problem for our design. We were able work with Sierra Circuits to come up with a board design that includes an internal layer of special black FR-4 to prevent light leakage through the heat reliefs. While this is certainly not a standard feature, Sierra was confident that they could implement it for us, and we look forward to testing the boards' opacity in the spring.
+
Most PCBs with internal copper layers are already fairly opaque, because the copper blocks light from transmitting through the FR-4 and prepreg. Through hole components do not particulary compromise board opacity, because the holes are plugged with component pins and solder. What does have a greater affect on the opaqueness of a board, however, is the thermal reliefs by which through hole pins and vias connect to internal plane layers. These reliefs are designed to aid in the soldering process by minimizing the amount of copper that is directly connected to the plating in the hole. A typical relief consists of four 7-10 mil traces connecting the hole's plating to the internal plane. The plane itself remains about 20 mil away from the hole, to prevent conduction of heat during the soldering process. Unfortunately, this means that there is a small gap in which there is only FR-4 to stop light from passing through the board. Since FR-4 is transparent, this poses a problem for our design. We were able work with Sierra Circuits to come up with a board design that includes an internal layer of special black FR-4 to prevent light leakage through the heat reliefs. While this is certainly not a standard feature, Sierra was confident that they could implement it for us, and we look forward to testing the boards' opacity in the spring.
261

edits

Navigation menu