Changes

Jump to navigation Jump to search
Line 220: Line 220:  
<math> \frac{d^2}{dt^2} \left(\frac{1}{4\pi^2} G(\mathbf{k},\omega)e^{-i\mathbf{k}\cdot\Delta \mathbf{x}}e^{i\omega \Delta t}\right)-c^2\frac{d^2}{dx^2}\left(\frac{1}{4\pi^2} G(\mathbf{k},\omega)e^{-i\mathbf{k}\cdot\Delta \mathbf{x}}e^{i\omega \Delta t}\right) = \frac{1}{16\pi^4} e^{-i\mathbf{k}\cdot\Delta \mathbf{x}}e^{i\omega \Delta t}</math>
 
<math> \frac{d^2}{dt^2} \left(\frac{1}{4\pi^2} G(\mathbf{k},\omega)e^{-i\mathbf{k}\cdot\Delta \mathbf{x}}e^{i\omega \Delta t}\right)-c^2\frac{d^2}{dx^2}\left(\frac{1}{4\pi^2} G(\mathbf{k},\omega)e^{-i\mathbf{k}\cdot\Delta \mathbf{x}}e^{i\omega \Delta t}\right) = \frac{1}{16\pi^4} e^{-i\mathbf{k}\cdot\Delta \mathbf{x}}e^{i\omega \Delta t}</math>
   −
This is a complicated equation, but it can be solved for G. Once G is calculated, we can apply an inverse Fourier transform and find g; we can then plug this into
+
This is a complicated equation, but it can be solved for G.
 +
 
 +
<math>G(\mathbf{k},\omega) = \frac{1}{4\pi^2}\frac{1}{c^2k^2-\omega^2}</math>
 +
 
 +
Once G is calculated, we can apply an inverse Fourier transform and find g; we can then plug this into
    
<math>\int{dt_i} \int{f(x_i,t_i)g(\Delta x, \Delta t) dx_i dy_i}</math>  
 
<math>\int{dt_i} \int{f(x_i,t_i)g(\Delta x, \Delta t) dx_i dy_i}</math>  
135

edits

Navigation menu