Line 103: |
Line 103: |
| where <math> n _1 </math> is the index of refraction for air and <math> n _2 </math> is the index of refraction for diamond. We can look these up and calculate R: | | where <math> n _1 </math> is the index of refraction for air and <math> n _2 </math> is the index of refraction for diamond. We can look these up and calculate R: |
| | | |
− | <math>R = 0.17189</math> | + | <math>R = 0.17189\,</math> |
| | | |
| We also need the coefficient of transmission T. However, because <math> R + T = 1 </math>, calculation is easy. | | We also need the coefficient of transmission T. However, because <math> R + T = 1 </math>, calculation is easy. |
| | | |
− | <math>T = 0.82811</math> | + | <math>T = 0.82811\,</math> |
| | | |
| This tells us that about 83% of the laser will be transmitted through the diamond at each reflection. This tells us <math> C _1 </math>: | | This tells us that about 83% of the laser will be transmitted through the diamond at each reflection. This tells us <math> C _1 </math>: |
| | | |
− | <math> C _1 = R = 0.17189 </math> | + | <math> C _1 = R = 0.17189 \,</math> |
| | | |
| For <math> C _2 </math>, we must take into account two transmissions and one reflection. The calculation is easy: | | For <math> C _2 </math>, we must take into account two transmissions and one reflection. The calculation is easy: |
| | | |
− | <math> C _2 = R T^2 = 0.117876 </math> | + | <math> C _2 = R T^2 = 0.117876 \,</math> |
| | | |
| We can continue and calculate <math> C _3</math>, <math> C _4</math>, and <math> C _5</math>. | | We can continue and calculate <math> C _3</math>, <math> C _4</math>, and <math> C _5</math>. |
| | | |
− | <math> C _3 = R^3 T^2 = 0.003483 </math> | + | <math> C _3 = R^3 T^2 = 0.003483 \,</math> |
| | | |
− | <math> C _4 = R^5 T^2 = 0.000103 </math> | + | <math> C _4 = R^5 T^2 = 0.000103 \,</math> |
| | | |
− | <math> C _5 = R^7 T^2 = 0.000003 </math> | + | <math> C _5 = R^7 T^2 = 0.000003 \,</math> |
| | | |
| Generally, for <math> C _n </math> where <math> n > 2 </math>: | | Generally, for <math> C _n </math> where <math> n > 2 </math>: |
| | | |
− | <math> C _n = T^2 R^{2(n-1)-1} </math> | + | <math> C _n = T^2 R^{2(n-1)-1} \,</math> |
| | | |
| Using just the five waves <math> C _1 </math> to <math> C _5 </math> to begin with, we can recalculate our shape term. | | Using just the five waves <math> C _1 </math> to <math> C _5 </math> to begin with, we can recalculate our shape term. |
| | | |
− | <math>\frac{A^2 _{12345}}{A ^2} = C^2 _1 + C^2 _2 + C^2 _3 + C^2 _4 + C^2 _5 + 2 C _1 C _2 \cos ( d _2 - d _1 ) + 2 C _1 C _3 \cos ( d _3 - d _1 ) + 2 C _1 C _4 \cos ( d _4 - d _1 )</math> | + | <math>\frac{A^2 _{12345}}{A ^2} = C^2 _1 + C^2 _2 + C^2 _3 + C^2 _4 + C^2 _5 + 2 C _1 C _2 \cos ( d _2 - d _1 ) </math> |
− | <math> + 2 C _1 C _5 \cos ( d _5 - d _1 ) + 2 C _2 C _3 \cos ( d _3 - d _2 ) + 2 C _2 C _4 \cos ( d _4 - d _2 ) + 2 C _2 C _5 \cos ( d _5 - d _2 ) + 2 C _3 C _4 \cos ( d _4 - d _3 )</math>
| + | ::: <math> + 2 C _1 C _3 \cos ( d _3 - d _1 ) + 2 C _1 C _4 \cos ( d _4 - d _1 ) + 2 C _1 C _5 \cos ( d _5 - d _1 ) \,</math> |
− | <math> + 2 C _3 C _5 \cos ( d _5 - d _3 )+ 2 C _4 C _5 \cos ( d _5 - d _4 ) </math>
| + | ::: <math> + 2 C _2 C _3 \cos ( d _3 - d _2 ) + 2 C _2 C _4 \cos ( d _4 - d _2 ) + 2 C _2 C _5 \cos ( d _5 - d _2 ) \,</math> |
| + | ::: <math> + 2 C _3 C _4 \cos ( d _4 - d _3 ) + 2 C _3 C _5 \cos ( d _5 - d _3 )+ 2 C _4 C _5 \cos ( d _5 - d _4 ) \,</math> |
| | | |
| This is an unnerving equation. However, we only have eleven C-terms that need to be calculated. We can begin with the sum of C-terms and compare it to the idealized version. | | This is an unnerving equation. However, we only have eleven C-terms that need to be calculated. We can begin with the sum of C-terms and compare it to the idealized version. |
| | | |
− | <math> C^2 _1 + C^2 _2 + C^2 _3 + C^2 _4 + C^2 _5 = 0.043453</math> | + | <math> C^2 _1 + C^2 _2 + C^2 _3 + C^2 _4 + C^2 _5 = 0.043453\,</math> |
| | | |
− | <math> C^2 _1 + C^2 _2 = 0.043441</math> | + | <math> C^2 _1 + C^2 _2 = 0.043441\,</math> |
| | | |
| Because the difference between these terms is three orders of magnitude less than the measurement, we can count it as error and do not need to compensate for it. | | Because the difference between these terms is three orders of magnitude less than the measurement, we can count it as error and do not need to compensate for it. |
Line 145: |
Line 146: |
| Next, we need to calculate all of the inner products. | | Next, we need to calculate all of the inner products. |
| | | |
− | <math>2 C _1 C _2 = 0.0405</math> | + | <math>2 C _1 C _2 = 0.0405\,</math> |
| | | |
− | <math>2 C _1 C _3 = 0.0012</math> | + | <math>2 C _1 C _3 = 0.0012\,</math> |
| | | |
− | <math>2 C _1 C _4 = 0.0000</math> | + | <math>2 C _1 C _4 = 0.0000\,</math> |
| | | |
− | <math>2 C _1 C _5 = 0.0000</math> | + | <math>2 C _1 C _5 = 0.0000\,</math> |
| | | |
− | <math>2 C _2 C _3 = 0.0008</math> | + | <math>2 C _2 C _3 = 0.0008\,</math> |
| | | |
− | <math>2 C _2 C _4 = 0.0000</math> | + | <math>2 C _2 C _4 = 0.0000\,</math> |
| | | |
− | <math>2 C _2 C _5 = 0.0000</math> | + | <math>2 C _2 C _5 = 0.0000\,</math> |
| | | |
− | <math>2 C _3 C _4 = 0.0000</math> | + | <math>2 C _3 C _4 = 0.0000\,</math> |
| | | |
− | <math>2 C _3 C _5 = 0.0000</math> | + | <math>2 C _3 C _5 = 0.0000\,</math> |
| | | |
− | <math>2 C _4 C _5 = 0.0000</math> | + | <math>2 C _4 C _5 = 0.0000\,</math> |
| | | |
| Once again, the terms become very small very quickly. Because even the largest internal-reflection induced term (<math> 2 C _2 C _3 </math>) is more than an order of magnitude smaller than the needed terms, we can treat all internal reflection as error and ignore it. | | Once again, the terms become very small very quickly. Because even the largest internal-reflection induced term (<math> 2 C _2 C _3 </math>) is more than an order of magnitude smaller than the needed terms, we can treat all internal reflection as error and ignore it. |