<math>A^2 _{total} = A^2 _1 + A^2 _2 + 2 A _1 A _2 \cos ( d _2 - d _1 ) </math>
<math>A^2 _{total} = A^2 _1 + A^2 _2 + 2 A _1 A _2 \cos ( d _2 - d _1 ) </math>
+
=
=
+
<math>A^2 _{total} = 2 A^2 + 2 A^2 \cos ( d _2 - d _1 ) </math>
<math>A^2 _{total} = 2 A^2 + 2 A^2 \cos ( d _2 - d _1 ) </math>
+
=
=
−
<math>A^2 _{total} = 2 A^2 (1 + \cos ( d _2 - d _1 ) </math>
+
+
<math>A^2 _{total} = 2 A^2 (1 + \cos ( d _2 - d _1 ) ) </math>
+
+
Because the wave reflecting off the back of the diamond travels through the diamond twice, the term <math> d _2 - d _1 </math> is twice the thickness of the diamond, in seconds. Because this measurement is in unhelpful units, we can multiply it by the speed of light in a diamond and divide by two for the thickness.