Changes

Jump to navigation Jump to search
228 bytes added ,  00:07, 14 July 2008
m
no edit summary
Line 66: Line 66:  
<math>G(\mu_1,\sigma_1^2) \otimes G(\mu_2,\sigma_2^2) = G(\mu_1 + \mu_2,\sigma_1^2 + \sigma_2^2)</math>   
 
<math>G(\mu_1,\sigma_1^2) \otimes G(\mu_2,\sigma_2^2) = G(\mu_1 + \mu_2,\sigma_1^2 + \sigma_2^2)</math>   
   −
The, expanding the ''f<sub>m</sub>'' product using the Binomial Expansion, the distribution becomes  
+
Then, expanding the ''f<sub>m</sub>'' product using the Binomial Expansion, the distribution becomes  
    
<math>F(q) = \sum\limits_{m=0}^{\infty} \sum\limits_{n=0}^m \sum\limits_{k=0}^{n}  
 
<math>F(q) = \sum\limits_{m=0}^{\infty} \sum\limits_{n=0}^m \sum\limits_{k=0}^{n}  
Line 75: Line 75:  
\ G\left( (m-n) + (n-k)p + kr,\ (m-n)\sigma_1^2 + (n-k)\sigma_2^2 + k\sigma_3^2 \right)
 
\ G\left( (m-n) + (n-k)p + kr,\ (m-n)\sigma_1^2 + (n-k)\sigma_2^2 + k\sigma_3^2 \right)
 
</math>
 
</math>
 +
 +
This model showed good agreement with the data. The fitter, without any constraints on the third Gaussian, pulled toward a solution in which the peak of secondaries showed slight asymmetry, biased to the left in the spectrum.
1,004

edits

Navigation menu