Changes

Jump to navigation Jump to search
m
Line 205: Line 205:  
* The Gaussian smearing of the individual pixel pulse-height distribution was replaced with the following function that has an asymmetric tail.
 
* The Gaussian smearing of the individual pixel pulse-height distribution was replaced with the following function that has an asymmetric tail.
 
{|align="center"
 
{|align="center"
|<math> \frac{}{}f(x;\alpha,\beta,\sigma) </math> ||=|| <math>\beta\frac{\alpha}{2}\,e^{\alpha x+\frac{\alpha^2\sigma^2}{2}}\left[1-Erf(\frac{x+\alpha\sigma^2}{\sqrt{2}\sigma})\right] </math>
+
|<math> \frac{}{}f(x;\alpha,\beta,\sigma) </math> ||=|| <math>(1-\beta)\frac{\alpha}{2}\,e^{\alpha x+\frac{\alpha^2\sigma^2}{2}}\left[1-Erf(\frac{x+\alpha\sigma^2}{\sqrt{2}\sigma})\right] </math>
 
|-
 
|-
|&nbsp;||&nbsp;||<math> + \frac{1-\beta}{\sqrt{2\pi}\sigma}\,e^{-\frac{x^2}{2\sigma^2}}
+
|&nbsp;||&nbsp;||<math> + \frac{\beta}{\sqrt{2\pi}\sigma}\,e^{-\frac{x^2}{2\sigma^2}}
 
</math>
 
</math>
 
|}
 
|}
Line 213: Line 213:  
:# <math>\alpha</math> = inverse length of left-side tail
 
:# <math>\alpha</math> = inverse length of left-side tail
 
:# <math>\beta</math> = fraction of peak integral in left-side tail
 
:# <math>\beta</math> = fraction of peak integral in left-side tail
:# <math>\sigma</math> = sigma of Gaussian right-side tail
+
:# <math>\sigma</math> = sigma of Gaussian right-side tail = <math>\sqrt{\sigma_0^2+(p+s)\sigma_1^2}</math>
    
* The mean cross-talk parameter, formerly <i>p</i>&mu; in the treatment described above, has been replaced with <i>p</i><sup>2</sup>&mu;.
 
* The mean cross-talk parameter, formerly <i>p</i>&mu; in the treatment described above, has been replaced with <i>p</i><sup>2</sup>&mu;.
1,004

edits

Navigation menu