Line 19: |
Line 19: |
| <tr> | | <tr> |
| <td>'''SA_EasyScheduler'''</td> | | <td>'''SA_EasyScheduler'''</td> |
− | <td>user defined temperature</td> | + | <td>''user defined temperature''</td> |
− | <td>user defined chain length</td> | + | <td>''user defined chain length''</td> |
| <td><math>T_n</math> | | <td><math>T_n</math> |
| <math>=\alpha T_{n-1}</math></td> | | <math>=\alpha T_{n-1}</math></td> |
− | <td>acceptance ratio less than χ<sub>min</sub> after a given number ''k'' of temperature steps</td> | + | <td>''acceptance ratio less than χ<sub>min</sub> after a given number ''k'' of temperature steps''</td> |
| </tr> | | </tr> |
| <tr> | | <tr> |
| <td>'''SA_AartsScheduler'''</td> | | <td>'''SA_AartsScheduler'''</td> |
| <td><math>T=\bar{\Delta C^{(+)}}\left(\ln{\frac{m_2}{m_2\chi_0-(1-\chi_0)m_1}}\right)^{-1}</math></td> | | <td><math>T=\bar{\Delta C^{(+)}}\left(\ln{\frac{m_2}{m_2\chi_0-(1-\chi_0)m_1}}\right)^{-1}</math></td> |
− | <td>"length of a subchain with constant temperature is set to the number local neighborhood"</td> | + | <td>''"length of a subchain with constant temperature is set to the number local neighborhood"''</td> |
| <td><math>T_n=T_{n-1}\left(1+\frac{\ln(1+\delta)T_{n-1}}{3\sigma(T_{n-1)}}\right)^{-1}</math></td> | | <td><math>T_n=T_{n-1}\left(1+\frac{\ln(1+\delta)T_{n-1}}{3\sigma(T_{n-1)}}\right)^{-1}</math></td> |
− | <td>terminates when the smoothed mean value of the derivative of the cost function is less than ε</td> | + | <td>''terminates when the smoothed mean value of the derivative of the cost function is less than'' ε</td> |
| </tr> | | </tr> |
| <tr> | | <tr> |
| <td>'''SA_MIRScheduler'''</td> | | <td>'''SA_MIRScheduler'''</td> |
− | <td>(similar to SA_AartsScheduler)</td> | + | <td>''similar to SA_AartsScheduler''</td> |
| <td><math>T_{start}=-\frac{\Delta C_{max}}{\ln \chi_0}</math></td> | | <td><math>T_{start}=-\frac{\Delta C_{max}}{\ln \chi_0}</math></td> |
| <td><math>T_n=\alpha T_{n-1}</math></td> | | <td><math>T_n=\alpha T_{n-1}</math></td> |