Changes

Jump to navigation Jump to search
Line 26: Line 26:  
Using the programming power of Matlab, we can solve our system of equations Mv=b, where M, v, and b are given below.
 
Using the programming power of Matlab, we can solve our system of equations Mv=b, where M, v, and b are given below.
    +
{|width="80%"
 +
|align="right"|
 
<math>M = \begin{bmatrix}
 
<math>M = \begin{bmatrix}
 
-1 & 1 & 1 & 0\\
 
-1 & 1 & 1 & 0\\
Line 32: Line 34:  
0 & Z_2^{-1} e^{ik_2a} & Z_2^{-1} e^{-ik_2a} & -Z_1^{-1} e^{-ik_1a}
 
0 & Z_2^{-1} e^{ik_2a} & Z_2^{-1} e^{-ik_2a} & -Z_1^{-1} e^{-ik_1a}
 
\end{bmatrix}</math>
 
\end{bmatrix}</math>
 +
|align="center"|(1)
 +
|}
 +
    
<math> v = \begin{bmatrix} E_r\\ E_f\\ E_b\\ E_t\end{bmatrix}</math>
 
<math> v = \begin{bmatrix} E_r\\ E_f\\ E_b\\ E_t\end{bmatrix}</math>
1,359

edits

Navigation menu