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1 Introduction

A long-standing question in modern physics is concerning the nature of the quark confinement
mechanism of quarks and gluons in quantum chromodynamics (QCD). To begin unraveling this
mystery, the GlueX experiment in Hall D at Jefferson Laboratory aims to better understand the
quark and gluonic degrees of freedom that are predicted by QCD through gluonic excitations of
hybrid mesons originating from 𝛾𝑝 collisions [1, 2]. A comprehensive study of this spectrum of
hybrid mesons requires accurate determination of the final hadronic states through good particle
identificaiton (PID). The PID capabilities of the GlueX detector is enabled by four detector systems:
a forward time-of-flight wall (TOF), a barrel calorimeter with a cylindrical geometry (BCAL), a
forward lead-glass calorimenter with a planar geometry (FCAL), a thin scintillator start counter
(SC), and a Čerenkov detector [3, 4]. GlueX uses time-of-flight (TOF and BCAL), forward going
tracks (Čerenkov detector), and dE/ds (CDC) information to classify particles using a likelihood-
based PID system after reconstruction and kinematic fitting.

In this work, the aim is to demonstrate that PID accuracies for GlueX analyses can be improved
through the use of machine learning (ML) [5]. The advent of ML has led to innumerable studies in
a wide range of fields, including a GlueX study [6] that used a discriminating neural network (NN)
to reduce background in the FCAL. Motivated by such studies and the demand for high accuracy
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PID, this work makes use of NNs to classify single hadronic particles using GlueX simulation
data. The PID accuracies obtained from these NN models are directly compared to ’manual’ PID
methods using the same simulation dataset. This work exhibits that ML models can be a more
effective alternative to the contemporary methods of PID.

2 Monte Carlo Simulation Dataset

The training and test data are extracted from the low-momentum GlueX particle gun simulations.
In these simulations, a particle is spawned at a random location within the target and fired in a
random direction with a random magnitude of momentum under 1 GeV/c. The interactions between
the particle and the detector (along with any decays that may occur) are handled by Geant4 [7, 8],
with the simulated detector hits being stored in a Hall D Data Model (HDDM) format. These
data are then reconstructed using the halld_recon package to identify showers and tracks, which
significantly decreases the number of features needed to describe each event. Finally, these data are
converted from the hierarchical HDDM format to a tabular format that can be used in either manual
or NN PID. The labels of each quantity in our final dataset are shown in Table 1.

Although the particle gun simulations allow for easy event labeling, decays and other interac-
tions in the detector may produce tracks or showers that are not produced directly by the generated
particle. To exclude events in which the generated particle decayed before interacting with the
detector, we remove any event that has more than one vertex in the first 500 seconds of the sim-
ulation, as indicated by the truth information of the Monte Carlo simulation. Note that the initial
spawning of the generated particle is counted as a vertex. To eliminate events where interactions
with the detector produced secondary tracks or showers, cuts were placed on the number of tracks
and showers per event. For events with a charged generated particle, the event was only included in
the training and test samples if the reconstructed event contained exactly one track and one shower,
and the shower must be associated with the track. Events with neutral generated particles must have
exactly one shower and no tracks. These cuts are necessary to ensure the event label matches the
particle that produced the shower or track that is included in the training or test dataset, though it
may inflate the accuracy of PID techniques due to the exclusion of complicated interactions with
the detector.

The training dataset consists of 80,000 events per particle type. For events with a charged
generated particle, only the track hypothesis that matches the generated particle type is included
in the training dataset. For events with muons, only the pion track hypothesis was added to the
training dataset, as there is no muon hypothesis in the default reconstruction. This results in a
training dataset in which each row of the dataset represents a different event. In contrast, a row
corresponding to each hypothesis is added to the test dataset for events with charged generated
particles; the event number is identified by the group label, which only appears in the test dataset.
For neutral particles, there is only one row in the test dataset per event, as no hypotheses are used in
the shower reconstruction process. The test dataset contains 40,000 events per particle type, though
the number of rows is substantially larger due to the inclusion of multiple hypotheses per event for
charged generated particles.
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Table 1: Feature labels of the particle gun dataset.

Column Unit Description Overflow Value

true ptype The true generated particle type (Geant3 coding)
ptype Particle hypothesis (Geant3 coding)
group Event number
E 𝐺𝑒𝑉 Particle total energy -5
px 𝐺𝑒𝑉/𝑐 Particle momentum X-component -500
py 𝐺𝑒𝑉/𝑐 Particle momentum Y-component -500
pz 𝐺𝑒𝑉/𝑐 Particle momentum Z-component -500
q 𝑒 Particle charge -10
E1E9 E1/E9 ratio for the matched FCAL cluster -5
E9E25 E9/E25 ratio for the matched FCAL cluster -5
docaTrack 𝑐𝑚 Impact parameter of track to FCAL cluster -5
preshowerE 𝐺𝑒𝑉 Shower energy in the 1st layer of the BCAL -5
sigLong 𝑐𝑚 RMS of BCAL shower along depth -5
sigTrans 𝑐𝑚 RMS of BCAL shower along azimuth -5
sigTheta 𝑟𝑎𝑑 RMS of BCAL shower along Z -5
E_L2 𝐺𝑒𝑉 Shower energy in the 2nd layer of the BCAL -5
E_L3 𝐺𝑒𝑉 Shower energy in the 3rd layer of the BCAL -5
E_L4 𝐺𝑒𝑉 Shower energy in the 4th layer of the BCAL -5
dEdxCDC 𝑘𝑒𝑉/𝑐𝑚 Average dE/ds of track in the CDC -5
dEdxFDC 𝑘𝑒𝑉/𝑐𝑚 Average dE/ds of track in the FDC -5
tShower 𝑛𝑠 Mean shower time in the BCAL or FCAL -10
thetac 𝑟𝑎𝑑 Track Cerenkov angle measured by DIRC -5
bCalPathLength 𝑐𝑚 Track distance from vertex to BCAL entry -5
fCalPathLength 𝑐𝑚 Track distance from vertex to FCAL entry -5
dEdxTOF 𝑘𝑒𝑉/𝑐𝑚 Average track dE/ds in the TOF -5
tofTOF 𝑛𝑠 Time from track vertex to impact on the TOF -5
pathLengthTOF 𝑐𝑚 Distance from track vertex to impact on the TOF -5
dEdxSc 𝑘𝑒𝑉/𝑐𝑚 dE/ds of track in the SC -5
pathLengthSc 𝑐𝑚 Distance from track vertex to impact on the SC -100
tofSc 𝑛𝑠 Time from track vertex to impact on the SC -100
xShower 𝑐𝑚 Shower X-component -500
yShower 𝑐𝑚 Shower Y-component -500
zShower 𝑐𝑚 Shower Z-component -500
xTrack 𝑐𝑚 Track X-component -500
yTrack 𝑐𝑚 Track Y-component -500
zTrack 𝑐𝑚 Track Z-component -500
CDChits Number of straws in the CDC producing hits -5
FDChits Number of anode wires in the FDC producing hits -5
DOCA 𝑐𝑚 Impact parameter of track at the BCAL cluster -5
deltaz 𝑐𝑚 Impact parameter of track at the BCAL along Z -100
deltaphi 𝑟𝑎𝑑 Impact parameter of track at the BCAL along azimuth -10
tFlightSc 𝑛𝑠 Calculated time from vertex to SC
tFlightBCAL 𝑛𝑠 Calculated time from vertex to BCAL
tFlightTOF 𝑛𝑠 Calculated time from vertex to TOF
tFlightFCAL 𝑛𝑠 Calculated time from vertex to FCAL
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3 DNN model description

In this section we explain and justify the Tensorflow implementations of the Adam optimizer, the
cross entropy loss function, the activation functions and Hyperband optimization.

3.1 Cross Entropy Loss Function

The advent of logistic regression [9] and the creation of the idea of cross-entropy in the early years
of information theory has evolved into a loss function that is ubiquitous in machine learning: the
cross entropy loss function. In general, the minimization of cross entropy between two distributions
is equivalent to the maximization of the log likelihood [10]. The log likelihood can be defined as:

𝑙 (𝜃) =
1
𝑁

𝑁∑︁
𝑖=1

𝑙𝑜𝑔(𝑃(𝑥𝑖 |𝜃)). (3.1)

Where 𝑥𝑖 is a given detection (or in the case of this work, a particle) and 𝜃 defines our parameter
space (e.g., energy loss, momenta). By maximizing the log likelihood, we can best predict the
probability of detecting a given 𝑥𝑖 when provided with 𝜃. The cross entropy 𝐻 (𝑃𝐷 (𝑥), 𝑃𝜃 (𝑥)) is
also defined in terms of the probability of 𝑥𝑖 and 𝜃:

𝐻 (𝑃𝐷 (𝑥), 𝑃𝜃 (𝑥)) = −
1
𝑁

𝑁∑︁
𝑖=1

𝑙𝑜𝑔(𝑃(𝑥𝑖 |𝜃)) = −𝑙 (𝜃). (3.2)

Thus, we see that maximizing the log likelihood is equivalent to minimizing the cross entropy,
known as the cross entropy and maximum likelihood principle. In our NN models, the Tensorflow
implementation of the cross entropy loss is used as the loss function during training.

3.2 Adam Optimizer

The Adam optimizer [11] is a method to efficiently optimize the subfunctions that make up the
entire objective function by taking gradient steps with respect to each individual subfunction. This
process also describes Stochastic Gradient Descent, however, the Adam optimizer is particularly
designed to optimize parameters for stochastic subfunctions in high dimensional space, while only
requiring first-order gradients. The large level of stochasticity in measured quanities within particle
colliders makes the Adam optimizer an ideal choice for minimizing the cross entropy loss function.

3.3 Structure and Activation Functions

The structure of the NN is comprised of an input layer, one or multiple hidden layers, and an output
layer. The input layer of our models is comprised of 38 nodes, which is equal to the number of
feature labels used in training, shown in Table 1. In each of the hidden layers of the NN are make
use of the Rectified Linear unit (ReLu) activation function [12, 13]. The ReLu activation function
is defined as:

𝑓 (𝑥) = 𝑚𝑎𝑥(0, 𝑥), (3.3)
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so that for any input 𝑥 from a previous neuron, a non-negative output 𝑓 (𝑥) will be produced
from that neuron. The non-linearity of ReLu introduces sparsity and avoids saturation at large values
while remaining simple. These advantages allow for computational efficiency during training and
for meaningful connections to be drawn between complex relationships in the data. In the output
layers of the NN models, the sigmoid activation function is used and is defined as:

𝑆(𝑥) =
1

1 + 𝑒−𝑥 .
(3.4)

With an input 𝑥, the output 𝑆(𝑥) will always be between 0 and 1. Using the sigmoid activation
function as the output of the NN models allows for a confidence-based prediction to made when
classifying particles.

3.4 Hyperband

In order to minimize the Cross Entropy Loss function, an optimization process is carried out for
the number of hidden layers, the number of neurons in each hidden layer, and the learning rate
of the Adam optimizer. In this work, the optimized values of each of these hyperparameters is
found using Hyperband [14]. This choice to employ Hyperband as the optimization algorithm is
made as it is more computationally efficient and performs better than Bayesian optimization [14].
The Hyperband algorithm selects a different set of hyperparameters and trains the neural network
for a fixed number of epochs. A method known as successive halving is invoked, in which only
half of the models with the largest Cross Entropy loss are allocated resources to continue training
after the fixed number of epochs have passed. This procedure is repeated until only a single set of
hyperparmaters remains; these hyperparmeters are then used to train the NN models.

4 Methods

In this section we describe our manual PID cuts and the training process for our neural network
models used for PID.

4.1 Manual PID

In this work, we identify pions (∼139.6 MeV/c2) and muons (∼105.7 MeV/c2) as the same particle,
denoted as 𝜋+ | 𝜇+ or 𝜋− | 𝜇− for the positive and negative counterparts, respectively. This
simplification is made for our PID methods in this paper since pions and muons have similar
masses and the GlueX detector does not have a hadronic calorimeter, which makes discerning
these particles particlularly difficult. Muons and Pions can be distinguished by investigating
the momentum distributions of a given event in the FCAL, however this must be done prior to
reconstruction and is outside the scope of this work.

The timing cuts implemented in this work make use of the Spring 2017 Analysis Launch
Cuts [1]; each of these cuts are shown in Table 2. The measured BCAL and FCAL times are
recorded as a single variable, tShower, in the simulation dataset, thus the BCAL and FCAL time
measurements must be distinguished. If an event has a detection for 𝐸𝐿2 then tShower is labeled
as the mean shower time in the BCAL and if there is a detection for E1E9 then tShower is labeled
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as the mean shower time in the FCAL. The difference between the mean shower times in each
detector is taken with the calculated time from the vertex to the BCAK (tFlightBCAL) or the
FCAL (tFlightFCAL). In order to assess the quality of a given hypothesis, a chi-squared value
is calculated between the mean shower time and calculated shower times. Only hypotheses with
a chi-squared value of less than 0.075 are considered robust; any hypotheses that are above this
threshold are labeled as no identification (no ID). There is only timing information for charged
particles in the simulation dataset, thus no timing cuts can be made for the neutral particles.

In addition to timing cuts, we also implement track energy loss cuts using the dEdxCDC variable
and the magnitude of the particle momentum. To create a decision boundary between each particle,
we use the same functional form of the equations used in the Spring 2017 Analysis Launch Cuts:

𝑑𝐸/𝑑𝑠 = 𝑒𝑎·𝑝+𝑏 + 𝑐, (4.1)

where 𝑝 is the momentum of a particle in units of𝐺𝑒𝑉/𝑐, 𝑑𝐸/𝑑𝑠 is the energy loss in the CDC
in units of 𝐾𝑒𝑉/𝑐𝑚 and 𝑒 is Euler’s number. 𝑎, 𝑏 and 𝑐 are constants that are varied in order to best
classify each particle. Using the training dataset, the number of incorrectly identified particles is
minimized by making each of these constants free parameters and utilizing the minimize method
from the scipy.optimize [15] module. The dE/ds – p decision boundaries are only derived
for charged particles as there is not sufficient data available for neutral particles in the simulation
dataset. The optimized decision boundaries are shown here:

𝑑𝐸/𝑑𝑠1 = 𝑒−5.095·𝑝−10.205 + (2.080 · 10−6), (4.2)

𝑑𝐸/𝑑𝑠2 = 𝑒−3.947·𝑝−12.284 + (1.936 · 10−6), (4.3)

𝑑𝐸/𝑑𝑠3 = 𝑒−0.185·𝑝+−19.215 + (2.190 · 10−6). (4.4)

Each optimized decision boundary is overlaid on the test dataset in Figure 1. An additional
manual cut is made for electrons and muons/pions, in which the ratio of the particle’s total energy
E to the magnitude of the momentum is taken, with a decision boundary at E/p = 0.83 𝑐. Lastly, a
hypothesis is only considered if the particle hypothesis matches the predicted hypothesis from our
manual PID. Each of these conditions for manual PID are shown in Table 2. A PID is made for
every hypothesis in our test dataset that meets the chi-squared criteria, however, if a given event
meets none of the cuts made, then no ID is designated. Furthermore, if an event has two or more
PIDs that match different hypotheses in our test dataset, then the particle type with the highest
chi-squared value is designated. The confusion matrix presenting the results of our manual PID on
charged particles is shown in Figure 2a.
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Figure 1: A 2-Dimensional histogram of the average track energy loss in the CDC plotted against
the magnitude of momentum vectors from our test dataset. The manual PID cuts described in
Section 4.1 are overlaid to show the classification boundaries; the functional form of each decision
boundary is shown in Equations 4.2 – 4.4. Regions of the plot shaded in red are classified as 𝑝 or
𝑝, purple as 𝐾+|−, yellow as 𝑒−|+, and blue as 𝜋+|− or 𝜇+|−.

Table 2: Manual PID cuts. If an entry is missing, there is no cut for that particle. The 𝑑𝐸/𝑑𝑠1,
𝑑𝐸/𝑑𝑠2 and 𝑑𝐸/𝑑𝑠3 cuts corresponded to Equations 4.2, 4.3 and 4.4, respectively.

Particle Δ𝑡 BCAL [ns] Δ𝑡 FCAL [ns] dE/ds [keV/cm] E/p [𝑐]

𝑒+ ± 1.0 ± 2.0 𝑑𝐸/𝑑𝑠3 < 𝑑𝐸/𝑑𝑠 & 𝑑𝐸/𝑑𝑠2 > 𝑑𝐸/𝑑𝑠 E/p > 0.83
𝑒− ± 1.0 ± 2.0 𝑑𝐸/𝑑𝑠3 < 𝑑𝐸/𝑑𝑠 & 𝑑𝐸/𝑑𝑠2 > 𝑑𝐸/𝑑𝑠 E/p > 0.83
𝜇+ |𝜋+ ± 1.0 ± 2.0 𝑑𝐸/𝑑𝑠3 > 𝑑𝐸/𝑑𝑠 E/p < 0.83
𝜇− |𝜋− ± 1.0 ± 2.0 𝑑𝐸/𝑑𝑠3 > 𝑑𝐸/𝑑𝑠 E/p < 0.83
𝐾+ ± 0.75 ± 2.5 𝑑𝐸/𝑑𝑠2 < 𝑑𝐸/𝑑𝑠 & 𝑑𝐸/𝑑𝑠1 > 𝑑𝐸/𝑑𝑠
𝐾− ± 0.75 ± 2.5 𝑑𝐸/𝑑𝑠2 < 𝑑𝐸/𝑑𝑠 & 𝑑𝐸/𝑑𝑠1 > 𝑑𝐸/𝑑𝑠
𝑝 ± 1.0 ± 2.0 𝑑𝐸/𝑑𝑠1 < 𝑑𝐸/𝑑𝑠
𝑝 ± 1.0 ± 2.0 𝑑𝐸/𝑑𝑠1 < 𝑑𝐸/𝑑𝑠
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(a) Manual PID (b) NN PID

Figure 2: The confusion matrix for manual PID on charged particles is shown in Figure 2a and the
confusion matrix for NN PID on charged particles is shown in Figure 2b. The generated particle
is shown on the y-axis and the identified particle is shown on the x-axis. For events in the manual
PID scheme that do not meet the chi-squared criteria described in Section 4.1, a no ID classification
is given. Similarly, for the NN PID method, a no ID classification is given when the confidence
criteria described in Section 4.2 is not achieved.

4.2 Neural Network PID

Prior to training the NN models, some data pre-processing steps were taken, which includes spliting
the test and training datasets into charged and neutral datasets. Additionally, Tensorflow requires
a real number input for training, thus any values in our datasets that do not have a detection are
replaced by the ’Overflow Value’ seen in Table 1. Lastly, only the features in Table 1 that have an
Overflow Value are used to train the NN models.

The NN models make use of the TensorFlow implementations of the Cross Entropy Loss
Function, Adam Optimizer and ReLu activation function, all of which are described in Section
3. The number of neurons, the number of hidden layers and the learning rate of the Adam
optimizer are optimized to have the maximum validation accuracy by Hyperband. Variation for
each hyperparameter is allowed between 1 and 6 hidden layers, 100 and 600 neurons per hidden
layer and 10−4 and 10−2 for the learning rate. The optimized hyperparameters are used to train a
NN model for a maximum of 50 epochs and training is stopped if the Cross Entropy Loss changes
by less than 0.01 after 5 successive epochs.

The trained NN models are used to make a classification on every hypothesis in the test dataset.
Each prediction made by the predict method from the Tensorflow models yield a confidence
value for each possible classification (i.e. particle). The highest confidence value across all
hypotheses in an event is taken as the PID. A no ID label is given for any PID that has a confidence
of less than 0.4. In the same way as Section 4.1, positive pions and muons and negative pions
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Figure 3: The confusion matrix for the NN PID for neutral particles. The generated particle is
shown on the y-axis and the particle classified by the neutral NN model is shown on the x-axis.
Particles that do not meet the confidence criteria discussed in Section 4.2 are classified with a no
ID label.

and muons are classified as the same particles. The confusion matrix for the charged NN model is
shown in Figure 2b and the confusion matrix for the neutral NN model is shown in Figure 3.

5 Results

In this section the results are presented for the traditional PID cuts and NN PID. A direct comparison
between these two methods is made and the advantages of NNs in PID are discussed. The importance
of each feature in the simulation dataset is determined to better understand how the NN models are
making predictions.

5.1 Comparing PID techniques

In Figure 2a, the 𝑝 sample is correctly identified with an accuracy of 0.942 for the manual PID
method, with only 0.052 of samples being allocated to the no ID column of the confusion matrix.
The 𝑝 is the particle with the highest accuracy, while the 𝐾−, 𝑒− and 𝑒+ have PID accuracies in the
range 0.82 – 0.84. The lower end of classification accuracies are 𝑝, 𝐾+, 𝜋+ | 𝜇+ and 𝜋− | 𝜇− in the
range 0.57 – 0.64. Many of the samples that are not correctly identified by the manual PID method
are designated as no ID. The most prominent exceptions of this are the 𝐾+, as 0.124 of the sample
are misidentified as 𝑝 while 0.092 and 0.107 of the 𝜋+ | 𝜇+ sample are identified as 𝐾+ and 𝑒+,
respectively. For 𝜋− | 𝜇−, 0.087 and 0.107 were identified as 𝐾− and 𝑒−, respectively. In addition
to these misclassifications, there are several cases in which the manual PID method misclassified
samples more infrequently (< 0.05). The large number of events that do not pass the chi-squared
timing cut and the instances of substantial particle misidentication discussed above highlight the
areas of improvement for the manual PID method.

In Figure 2b, the confusion matrix of the charged NN model is presented. The 𝑝, 𝑒− and 𝑒+ are
correctly identified in the range 0.94 – 0.98 and the five other charged particles have accuracies in
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the range 0.83 – 0.91. It is found that for all particles the PID accuracy is better for the charged NN
PID method in comparison to the manual PID method. 𝑝 and 𝐾− have an improvement of ∼0.03,
𝑒− and 𝑒+ have an improvement of ∼0.1, and the four other particles have substantial improvements
of more than 0.2. In addition to substantial improvements in PID accuracy, there are decreases in
the misclassification of 𝐾+ as 𝑝 (0.075), 𝜋+ | 𝜇+ as 𝐾+ (0.06) and 𝑒+ (0.041), as well as 𝜋− | 𝜇−
as 𝐾− (0.052) and 𝑒− (0.033). Despite the decreases in these particular cases, there are increases
in misclassification for 𝑝 as 𝐾− (0.064), 𝐾+ as 𝜋+ | 𝜇+ (0.087), and 𝐾− as 𝜋− | 𝜇− (0.098). The
increase in misidentification for these specific instances are the lone shortcoming of the NN PID
method in contrast to the manual PID method.

The classification scheme for the NN PID discussed in 4.2 outlines that the particle prediction
with the highest confidence for a given event is chosen as the PID for that event. This is in contrast
to manual PID, in which the hypothesis with the minimum timing chi-squared value is chosen. For
some particles, (e.g. 𝑒−) the timing information is crucial, however other particles (e.g. 𝑝) there
are quantities that play a more significant role in PID. For this reason, using the minimum timing
chi-squared as a metric for the strength of a hypothesis hinders the PID accuracy of particular
particles. However, for NN PID, the sigmoid output function gives a confidence interval between
0 and 1 determined by all of the input features of the dataset, thus giving a holistic analysis of the
recorded quantities in a given event.

In Figure 3, the confusion matrix for the neutral particle NN PID model is shown. Unlike the
charged particles, there does not exist robust manual PID methods for classifying neutral particles in
the GlueX experiment. The lone exception is the existence of timing cuts for 𝛾, though the simulation
dataset did not recover any predicted timing values (i.e. tFlightBCAL and tFlightFCAL), thus
no manual PID could be carried out for neutral particles. However, it is demonstrated that neutral
particles can be identified with high accuracy using NN PID methods; an accuracy of 0.982 is
achieved for 𝛾, 0.817 for 𝐾0

𝐿
and 0.891 for 𝑛. The model used to achieve these classification

accuracies is optimized by the HyperBand algorithm, which found optimal validation accuracy for
a NN model that had 3 hidden layers with a total of ∼2 · 105 parameters. This is compared to the
single hidden layer and ∼4 · 104 parameters of the charged NN model. This near order of magnitude
increase in complexity for the neutral NN PID model demonstrates the difficulty of neutral PID
in the GlueX detector, though it is shown to be possible through the use of ML. This success can
still be improved upon, as there is substantial confusion between the 𝐾0

𝐿
and the 𝑛; with the 𝐾0

𝐿

identified as a 𝑛 in 0.168 events, and 𝑛 as a 𝐾0
𝐿

in 0.108 events. The confusion between neutral
particles, as well as charged particles, can be minimized simply by training with more data and
adding complexity to the models, which can assuredly be achieved by the GlueX collaboration for
improved results.

5.2 Feature Importance

To analyze the PIDs made by the NN models, SHapley Additive exPlanations (SHAP) [16] is
employed to assess the importance of each feature used in training. SHAP is derived from Shapley
values from cooperative game theory and are a method to measure the average contribution of a
given feature across the entire feature space. A SHAP value is computed for each feature for a
given classification by considering possible permutations of features and then taking the average
of all marginal contributions by a feature to the resultant prediction. In our case with nonlinear

– 10 –



Figure 4: The absolute value of the SHAP values is denoted as the SHAP value magnitude. 103

hypotheses from the test sample are randomly sampled for each particle type and the SHAP value
[16] is calculated for each feature. Here, only the 𝑞 = +1 particles from the charged particle NN
model are shown; 𝑝 in pink, 𝐾+ in red, 𝑒+ in light blue and 𝜋+ | 𝜇+ in green. The black line in each
box plot represents the mean SHAP value in a given box plot. The upper and lower end of a given
box plot represents the 75th and 25th percentile of the data, respectively. Each of the feature labels
used to train our charged NN model from Table 1 are shown on the x-axis unless a SHAP value of
zero is calculated, then these features are omitted.

NN models with large datasets, this process is very computationally expensive, so random.choice
from NumPy [17] is used to randomly sample 1,000 hypotheses for each particle from our test
sample. Since the average marginal contribution of a given feature can either be positive or negative
the absolute value of the SHAP values is taken. The magnitude of the SHAP values for positively
charged particles is shown in Figure 4, negatively charged particles in Figure 5, and neutral particles
in Figure 6.

For 𝑝 in Figure 4, it can be seen that the most important feature is dEdxCDC by over an order
of magnitude. This result is unsurprising as 𝑝 has traditionally been identified using this feature in
previous GlueX PID studies. Additionally, pathLengthSc is another pivotal variable in the 𝑝 NN
PID, which is used to obtain the timing information used in manual PID, thus this dependency is
also unsurprising. Variables such as E_L2, E_L3, E_L4, yShower and zShower each proved to be
substantially beneficial in the classification of 𝑝 despite not being used in manual PID. This is in
comparison to each of the momenta components, which are shown to be less crucial for identifying
𝑝 although being necessary to perform manual PID. It is also important to highlight that, in general,
the data outside of the interquartile range of a given box plot has a tendency to be skewed towards
a minimum value. This is due to an occasional ambiguous measurement or implementation of an
overflow value for a given event, which causes the models to not rely heavily on this feature for a
given classification. Such a case yields SHAP values outside of the interquartile range, giving most
of the features in the feature space tails towards their minimum values. Conversely, features such as
docaTrack or FDChits have very constrained minimum and maximum values for the respective
box plots, signifying that the models are able to consistently rely on these variables due to ubiquity
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Figure 5: The same as Figure 4, except the SHAP value magnitudes for particles with 𝑞 = −1 are
shown. 𝑝 is displayed in pink, 𝐾− in red, 𝑒− in light blue and 𝜋− | 𝜇− in green.

Figure 6: The same as Figure 4 and 5, except the SHAP value magnitudes for particles included in
our neutral particle NN model are shown. 𝛾 is displayed in pink, 𝐾0

𝐿
in red and 𝑛 in light blue.

and this particular feature having a characteristic distribution for a given particle. For 𝑝, Figure 4
demonstrates that nearly all features can be used for a given classification, and that the PID process
for our NN PID model is dynamic and nonlinear.

As for 𝐾+, 𝑒+ and 𝜋+ | 𝜇+ in Figure 4, the noteworthy features that were used for manual
PID that also have large SHAP values are dEdxCDC and pathLengthSc for 𝐾+, tShower for 𝑒+,
and tShower as well as pathLengthSc for 𝜋+ | 𝜇+. In contrast, each of the positive particles
also rely heavily on features such as E_L2 and zShower to make classifications, which are features
that are generally not included in manual PID for the GlueX experiment. Using the results shown
in Figure 4, one could design manual PID cuts for one of the features that consistently has large
SHAP values (e.g. zShower) in order to boost manual PID accuracies. However, for these three
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positively charged particles, all features have SHAP values within two or three orders of magnitude
of each other suggesting that in order to achieve high PID accuracies the entire feature space should
be analyzed and synthesized together. Many of the same conclusions can be drawn for Figure 5,
in which we display the SHAP value magnitudes for the negatively charged particles. 𝑝 follows
similar trends as 𝑝, and the other three negatively charged particles follow the same trends for a
given feature as their positively charged counterparts.

It should be noted that in Figures 4 and 5, the feature labels q, dEdxTOF, tofTOF and
pathLengthTOF are omitted because all calculated SHAP values yield a value of zero. For
dEdxTOF, tofTOF and pathLengthTOF, this is done simply because there are no recorded values
in our simulation dataset and all values for these features were replaced by the Overflow Values
in Table 1, thus the model could not make use of these features. Contrarily, q was available in all
events, but given that the dataset was separated for training into a charged and neutral dataset, the
capacity of q to aid in classification was significantly reduced. The absence of q from the Figures
4 and 5 reveals that charge is not an essential feature when distinguishing the positive and negative
counterparts of a given particle in the GlueX detector after reconstruction.

In Figure 6, the SHAP values for neutral particles is shown. The most obvious property of
the neutral SHAP value plot is the large number of features that are missing, and as in the charged
model, the omitted features have SHAP values of zero. All these features with the exception of q
have no detections in our simulation test dataset, thus they are always defaulted to the Overflow
Value shown in Table 1 and are not crucial features for neutral PID. In the case of q, all particles
have a charge of 0, thus this feature is not instructive for the neutral NN model. Similarly to the
SHAP values for charged particles, many of the features for the neutral particles have long whiskers
extending from the 25th percentile to the minimum SHAP value magnitude. Again, this is due
to a combination of sparsity and similarity between particles. The only features that do not have
SHAP magnitudes skewed to low values are E1E9 and E9E25 for 𝑛, in spite of this these features
having lower average SHAP magnitudes. It can also be seen that E, tShower and zShower are the
features that contribute the most to neutral particle classification. However, in the same manner as
the charged NN model, the neutral NN model makes use of all available data to make classifications.
Even with a substantial portion of the simulation dataset not having measurements, the neutral NN
model still proved to be effective, suggesting that ML should be used in future GlueX PID studies.

6 Conclusion

In this work, the traditional PID methods used in the GlueX detector were compared with NN PID
methods. The GlueX manual PID methods were adapted to best classify charged particles using
the training simulation dataset while a charged and a neutral NN model were trained using this
same dataset. It was found that the NN models outperformed the standard PID methods used by the
GlueX collaboration for all charged particles and were able to successfully conduct neutral particle
PID, which has been a long standing challenge for the GlueX experiment. In addition to higher
PID accuracies, the NN models allow for an unbiased prediction-based PID to be performed that
includes a holistic interpretation of all quantities obtained after reconstruction. The NN models
also enable feature importance to be conducted, which gives insight into how the NN models are
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making these classifications and may give key insight into underlying physics when applied on
experimental data.

These results are of course taken with the caveat that the data being used is simulation data, in
the low energy regime (0 – 1 GeV) and only the purest (single track and/or single shower) particle
gun data is used. Despite the potential biases and inflated PID accuracies invoked by the dataset
used in this study, the potential of ML to contribute to PID in the GlueX experiment is made evident.
The use of simulation data at higher energies (1 – 12 GeV), hit data rather than reconstructed data,
or experimental data are all potential pathways to test the capabilities of ML at PID and to bolster
the success of the GlueX experiment.
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