
Prepared for submission to JINST

Particle identification in the GlueX detector using a
neural network

E. Habjan𝑎 R. Dube𝑎 R. Jones𝑎

𝑎University of Connecticut, Department of Physics,
196A Auditorium Road, Unit 3046, Storrs, CT 06269, USA

E-mail: erichabjan@gmail.com

Abstract: Accurate Particle Identification (PID) is a crucial element for successful reconstruction
of interactions measured in particle physics experiments. In the GlueX experiment at Jefferson
Laboratory, PID is achieved by making cuts on the kinematic properties of tracks and showers
reconstructed from hits in the detector. However, in this work we seek to improve upon these simple
cuts-based procedures using machine learning with neural networks. The promise of this approach
is the ability to exploit hidden correlations between PID variables in the reconstructed kinematics
data. We demonstrate that both charged and neutral particles can be identified in simulated GlueX
events with significantly improved accuracy using a neural network.

Keywords: Only keywords from JINST’s keywords list please

mailto:erichabjan@gmail.com

Contents

1 Introduction 1

2 Monte Carlo Simulation Dataset 1

3 DNN model description 2
3.1 Cross Entropy Loss Function 2
3.2 Adam Optimizer 4
3.3 Structure and Activation Functions 4
3.4 Hyperband 5

4 Methods 5
4.1 Manual PID 5
4.2 Neural Network PID 6

5 Results 8
5.1 Comparing PID techniques 9
5.2 Advantages of Neural Networks in PID 9
5.3 Feature Importance with Shapley Values 9

6 Discussion 11
6.1 Sample selection bias 11

7 Conclusion 11

1 Introduction

A very general overview of why this is important in the grand scheme of physics and talk about the
main goals of GlueX.

Reference this GlueX review [1].
What is PID and how is it normally done? Reference some review papers on PID.
Give a general introduction to machine learning and neural networks, reference some review

papers on neural networks.

2 Monte Carlo Simulation Dataset

Both the training and test data are extracted from the low-momentum GlueX particle gun simulations.
In these simulations, a particle is spawned at a random location within the target and fired in a
random direction with a random magnitude of momentum under 1 GeV/c. The interactions between
the particle and the detector (along with any decays that may occur) are handled by GEometry ANd

– 1 –

Tracking 4 (GEANT4) [2, 3], with the simulated detector hits being stored in a Hall D Data Model
(HDDM) format. These data are then reconstructed using the halld_recon package to identify
showers and tracks, which significantly decreases the number of features needed to describe each
event. Finally, these data are converted from the hierarchical HDDM format to a tabular format
that can be used in either manual and NN PID. The labels of each quantity in our final dataset are
shown in Table 1.

Although the particle gun simulations allow for easy event labeling, decays and other interac-
tions in the detector may produce tracks or showers that are not produced directly by the generated
particle. To exclude events in which the generated particle decayed before interacting with the
detector, we remove any event that has more than one vertex in the first 500 seconds of the sim-
ulation, as indicated by the truth information of the Monte Carlo simulation. Note that the initial
spawning of the generated particle is counted as a vertex. To eliminate events where interactions
with the detector produced secondary tracks or showers, cuts were placed on the number of tracks
and showers per event. For events with a charged generated particle, the event was only included in
the training and test samples if the reconstructed event contained exactly one track and one shower,
and the shower must be associated with the track. Events with neutral generated particles must have
exactly one shower and no tracks. These cuts are necessary to ensure the event label matches the
particle that produced the shower or track that is included in the training or test dataset, though it
may inflate the accuracy of PID techniques due to the exclusion of complicated interactions with
the detector.

The training dataset consists of 80,000 events per particle type. For events with a charged
generated particle, only the track hypothesis that matches the generated particle type is included
in the training dataset. For events with muons, only the pion track hypothesis was added to the
training dataset, as there is no muon hypothesis in the default reconstruction. This results in a
training dataset in which each row of the dataset represents a different event. In contrast, a row
corresponding to each hypothesis is added to the test dataset for events with charged generated
particles; the event number is identified by the group label, which only appears in the test dataset.
For neutral particles, there is only one row in the test dataset per event, as no hypotheses are used in
the shower reconstruction process. The test dataset contains 40,000 events per particle type, though
the number of rows is substantially larger due to the inclusion of multiple hypotheses per event for
charged generated particles.

3 DNN model description

In this section we explain and justify the Tensorflow implementations of the Adam optimizer, the
cross entropy loss function, the activation functions and Hyperband optimization.

3.1 Cross Entropy Loss Function

The advent of logistic regression by [4] and the creation of the idea of cross-entropy in the early
years of information theory has evolved into a loss function that ubiquitous in machine learning: the
cross entropy loss function. In general, the minimization of cross entropy between two distributions
is equivalent to the maximization of the log likelihood [5]. The log likelihood can be defined as:

– 2 –

Table 1: Feature labels of the particle gun dataset.

Column Unit Description Overflow Value

true ptype The true generated particle type (Geant3 coding)
ptype Particle hypothesis (Geant3 coding)
group Event number
E 𝐺𝑒𝑉 Particle total energy -5
px 𝐺𝑒𝑉/𝑐 Particle momentum X-component -500
py 𝐺𝑒𝑉/𝑐 Particle momentum Y-component -500
pz 𝐺𝑒𝑉/𝑐 Particle momentum Z-component -500
q 𝑒 Particle charge -10
E1E9 E1/E9 ratio for the matched FCAL cluster -5
E9E25 E9/E25 ratio for the matched FCAL cluster -5
docaTrack 𝑐𝑚 Impact parameter of track to FCAL cluster -5
preshowerE 𝐺𝑒𝑉 Shower energy in the 1st layer of the BCAL -5
sigLong 𝑐𝑚 RMS of BCAL shower along depth -5
sigTrans 𝑐𝑚 RMS of BCAL shower along azimuth -5
sigTheta 𝑟𝑎𝑑 RMS of BCAL shower along Z -5
E_L2 𝐺𝑒𝑉 Shower energy in the 2nd layer of the BCAL -5
E_L3 𝐺𝑒𝑉 Shower energy in the 3rd layer of the BCAL -5
E_L4 𝐺𝑒𝑉 Shower energy in the 4th layer of the BCAL -5
dEdxCDC 𝑘𝑒𝑉/𝑐𝑚 Average dE/ds of track in the CDC -5
dEdxFDC 𝑘𝑒𝑉/𝑐𝑚 Average dE/ds of track in the FDC -5
tShower 𝑛𝑠 Mean shower time in the BCAL or FCAL -10
thetac 𝑟𝑎𝑑 Track Cerenkov angle measured by DIRC -5
bCalPathLength 𝑐𝑚 Track distance from vertex to BCAL entry -5
fCalPathLength 𝑐𝑚 Track distance from vertex to FCAL entry -5
dEdxTOF 𝑘𝑒𝑉/𝑐𝑚 Average track dE/ds in the TOF -5
tofTOF 𝑛𝑠 Time from track vertex to impact on the TOF -5
pathLengthTOF 𝑐𝑚 Distance from track vertex to impact on the TOF -5
dEdxSc 𝑘𝑒𝑉/𝑐𝑚 dE/ds of track in the SC -5
pathLengthSc 𝑐𝑚 Distance from track vertex to impact on the SC -100
tofSc 𝑛𝑠 Time from track vertex to impact on the SC -100
xShower Shower X-component -500
yShower Shower Y-component -500
zShower Shower Z-component -500
xTrack Track X-component -500
yTrack Track Y-component -500
zTrack Track Z-component -500
CDChits Number of straws in the CDC producing hits -5
FDChits Number of anode wires in the FDC producing hits -5
DOCA 𝑐𝑚 Impact parameter of track at the BCAL cluster -5
deltaz 𝑐𝑚 Impact parameter of track at the BCAL along Z -100
deltaphi 𝑟𝑎𝑑 Impact parameter of track at the BCAL along azimuth -10
tFlightSc 𝑛𝑠 Calculated time from vertex to SC
tFlightBCAL 𝑛𝑠 Calculated time from vertex to BCAL
tFlightTOF 𝑛𝑠 Calculated time from vertex to TOF
tFlightFCAL 𝑛𝑠 Calculated time from vertex to FCAL

– 3 –

𝑙 (𝜃) =
1
𝑁

𝑁∑︁
𝑖=1

𝑙𝑜𝑔(𝑃(𝑥𝑖 |𝜃)). (3.1)

Where 𝑥𝑖 is a given detection (or in the case of this article, a particle) and 𝜃 defines our
parameter space (e.g., energy loss, momenta). By maximizing the log likelihood, we can best
predict the probability of detecting a given 𝑥𝑖 when provided with 𝜃. Also defined in terms of the
probability of 𝑥𝑖 and 𝜃, the cross entropy 𝐻 (𝑃𝐷 (𝑥), 𝑃𝜃 (𝑥)) is defined as:

𝐻 (𝑃𝐷 (𝑥), 𝑃𝜃 (𝑥)) = −
1
𝑁

𝑁∑︁
𝑖=1

𝑙𝑜𝑔(𝑃(𝑥𝑖 |𝜃)) = −𝑙 (𝜃). (3.2)

Thus, we see that maximizing the log likelihood is equivalent to minimizing the cross entropy;
otherwise known as the cross entropy and maximum likelihood principle. In our DNN, we utilize
the Tensorflow implementation of the cross entropy loss function, which calculates the cross
entropy loss between our dataset 𝜃 and the generated particle 𝑥𝑖 . The minimization of the cross
entropy loss is made to be the objective of our DNNs, and the optimization process is described in
Section 3.4.

3.2 Adam Optimizer

As stated in Section 3.1, we make minimizing the cross entropy loss function the objective of
our machine learning problem. To do this, we implement the Adam optimizer [6]. The Adam
optimizer is a method to efficiently optimize the subfunctions that make up the entire objective
function by taking gradient steps with respect to each individual subfunction. This process also
describes Stochastic Gradient Descent, however the Adam optimizer is particularly designed to
optimize parameters for stochastic subfunctions in high dimensional space, while only requiring
first-order gradients. The large level of stochasticity in measured quanities within particle colliders
makes the Adam optimizer an ideal choice for minimizing the cross entropy loss function.

3.3 Structure and Activation Functions

The structure of our neural network is comprised of an input layer, one or multiple hidden layers
(determined via optimization in Section 3.4), and an output layer. The input layer of our models is
comprised of 38 nodes, which is equal to the number of feature labels shown in Table 1. In each of
the hidden layers of our neural network we add the Rectified Linear unit (ReLu) activation function
[7, 8]. The ReLu activation function is described as

𝑓 (𝑥) = 𝑚𝑎𝑥(0, 𝑥), (3.3)

so that for any input 𝑥 from a previous neuron, a non-negative output 𝑓 (𝑥) will be produced from
that neuron. The non-linearity of ReLu introduces sparsity and avoids saturation at large values,
while also remaining simple. These advantages allow for efficient training and for meaningful

– 4 –

connections to be drawn between complex relationships in the data. In our output layers, we use
the sigmoid activation function, shown in Equation 3.4.

𝑆(𝑥) =
1

1 + 𝑒−𝑥 .
(3.4)

With an input 𝑥, the output 𝑆(𝑥) will always be between 0 and 1, which makes the sigmoid
function effective for PID.

3.4 Hyperband

In order to minimize the Cross Entropy Loss function, we must find optimized values for the
number of hidden layers, the number of neurons in each hidden layer, and the learning rate of the
Adam optimizer. In this work we find the optimized values of each of these hyperparameters using
Hyperband [9]. We chose to employ Hyperband as the optimization algorithm since it is more
computationally efficient and performs better than Bayesian optimization [9]. Hyperband selects
a different set of hyperparameters and trains the neural network for a fixed number of epochs. A
method known as successive halving is then utilized, which removes half of the models with the
largest Cross Entropy loss. This procedure is repeated until only a single set of hyperparmaters
remains; these hyperparmeters are then used for training.

4 Methods

In this section we describe our manual PID cuts and the training process for our neural network
models used for PID.

4.1 Manual PID

In this work, we identify pions (∼139.6 MeV/c2) and muons (∼105.7 MeV/c2) as the same particle,
denoted as 𝜋+ | 𝜇+ or 𝜋− | 𝜇− for the positive and negative counterparts, respectively. This
simplification is made for our PID methods in this paper since pions and muons have similar
masses and the GlueX detector does not have a hadronic calorimeter, which makes discerning
these particles particlularly difficult. Muons and Pions can be distinguished by investigating
the momentum distributions of a given event in the FCAL, however this must be done prior to
reconstruction, which is outside the scope of this work.

The timing cuts we implement in this make use of the Spring 2017 Analysis Launch Cuts [1];
each of these cuts are shown in Table 2. The measured BCAL and FCAL times are recorded as a
single variable in our dataset: tShower. If an event has a detection for 𝐸𝐿2 then we label tShower
as the mean shower time in the BCAL and if there is a detection for E1E9 then we label tShower
as the mean shower time in the FCAL. We find the difference between the mean shower times in
each detector with the calculated time from the vertex to the respective detectors (tFlightBCAL or
tFlightFCAL). In order to assess the quality of a given hypothesis, we calculate a chi-squared value
between the mean shower time and calculated shower times. Only hypotheses with a chi-squared
value of less than 0.075 are considered robust; any hypotheses that are above this threshold are

– 5 –

labeled as no identification (no ID). We can only perform timing cuts on charged particles as there
is no calculated timing information in our simulation dataset.

In addition to timing cuts, we also implement track energy loss cuts using the dEdxCDC variable
and the particle momentum vectors added in quadrature. To create a decision boundary between
each particle, we use the same functional form of the equations used in the Spring 2017 Analysis
Launch Cuts:

𝑑𝐸/𝑑𝑠 = 𝑒𝑎·𝑝+𝑏 + 𝑐, (4.1)

where 𝑝 is the momentum of a particle in units of𝐺𝑒𝑉/𝑐, 𝑑𝐸/𝑑𝑠 is the energy loss in the CDC
in units of 𝐾𝑒𝑉/𝑐𝑚 and 𝑒 is Euler’s number. 𝑎, 𝑏 and 𝑐 are constants that are varied in order to best
classify each particle. Using the training dataset, we minimize the number of incorrectly identified
particles by making each of these constants as free parameters and utilizing the minimize method
from the scipy.optimize [10] module. Similarly to the timing cuts, we only derive dE/ds – p
decision boundaries for charged particles. We show the optimized decision boundaries in Equations
4.2 – 4.4.

𝑑𝐸/𝑑𝑠1 = 𝑒−5.095·𝑝−10.205 + (2.080 · 10−6), (4.2)

𝑑𝐸/𝑑𝑠2 = 𝑒−3.947·𝑝−12.284 + (1.936 · 10−6), (4.3)

𝑑𝐸/𝑑𝑠3 = 𝑒−0.185·𝑝+−19.215 + (2.190 · 10−6), (4.4)

Each decision boundary is overlaid on the test dataset in Figure 1. Additionally, only for
electrons and muons/pions, we use the particle’s total energy E divided by the total momentum;
a decision boundary of 0.83 𝑐 is chosen. Lastly, we only consider a hypothesis if the particle
hypothesis matches the predicted hypothesis from our manual PID. Each of the conditions for our
manual PID are shown in Table 2. A PID is made for every hypothesis in our test dataset that
passes all of the cuts shown in Table 2. If a given even meets none of the cuts made, then no ID is
designated; if an event has two or more PIDs that match the hypotheses in our test dataset, then the
particle type with the highest chi-squared value is designated. The confusion matrix presenting the
results of our manual PID on charged particles is shown in Figure 2a.

4.2 Neural Network PID

We split our datasets into charged and neutral datasets. Furthermore, to ensure that the input feature
space of each event/hypothesis is uniform, we replace any value in our datasets that do not have a
detection with the ’Overflow Value’ seen in Table 1. Additionally, only the features in Table 1 that
have an Overflow Value are used to train our two models.

Our neural network models we make use of the TensorFlow implementations of the Cross
Entropy Loss Function, Adam Optimizer and ReLu activation function, all of which are described

– 6 –

Figure 1: A 2-Dimensional histogram of the average track energy loss in the CDC plotted against
the total momentum from our test dataset. The manual PID cuts described in Section 4.1 are overlaid
to show the classification boundaries; the functional form of each decision boundary is shown in
Equations 4.2 – 4.4. Regions of the plot shaded in red are classified as 𝑝 or 𝑝, purple as 𝐾+|−,
yellow as 𝑒−|+, and blue as 𝜋+|− or 𝜇+|−.

Table 2: Manual PID cuts. If an entry is missing, there is no cut for that particle. All manual PIDs
must match the given hypothesis.

Particle Δ𝑡 BCAL [ns] Δ𝑡 FCAL [ns] dE/ds [keV/cm] E/p [𝑐]

𝑒+ ± 1.0 ± 2.0 𝑑𝐸/𝑑𝑠3 < 𝑑𝐸/𝑑𝑠 & 𝑑𝐸/𝑑𝑠2 > 𝑑𝐸/𝑑𝑠 E/p > 0.83
𝑒− ± 1.0 ± 2.0 𝑑𝐸/𝑑𝑠3 < 𝑑𝐸/𝑑𝑠 & 𝑑𝐸/𝑑𝑠2 > 𝑑𝐸/𝑑𝑠 E/p > 0.83
𝜇+ |𝜋+ ± 1.0 ± 2.0 𝑑𝐸/𝑑𝑠3 > 𝑑𝐸/𝑑𝑠 E/p < 0.83
𝜇− |𝜋− ± 1.0 ± 2.0 𝑑𝐸/𝑑𝑠3 > 𝑑𝐸/𝑑𝑠 E/p < 0.83
𝐾+ ± 0.75 ± 2.5 𝑑𝐸/𝑑𝑠2 < 𝑑𝐸/𝑑𝑠 & 𝑑𝐸/𝑑𝑠1 > 𝑑𝐸/𝑑𝑠
𝐾− ± 0.75 ± 2.5 𝑑𝐸/𝑑𝑠2 < 𝑑𝐸/𝑑𝑠 & 𝑑𝐸/𝑑𝑠1 > 𝑑𝐸/𝑑𝑠
𝑝 ± 1.0 ± 2.0 𝑑𝐸/𝑑𝑠1 < 𝑑𝐸/𝑑𝑠
𝑝 ± 1.0 ± 2.0 𝑑𝐸/𝑑𝑠1 < 𝑑𝐸/𝑑𝑠

– 7 –

(a) Manual PID (b) NN PID

Figure 2: The confusion matrix for our manual PID on charged particles shown in Figure 2a and the
confusion matrix for our NN PID on charged particles shown in Figure 2b. The generated particle
is shown on the y-axis and the identified particle is shown on the x-axis. For events in our manual
PID scheme that do not meet our chi-squared criteria described in Section 4.1, a no identification
(no ID) classification is given. Similarly, for our NN PID method, a no ID classification is given
when the confidence criteria described in Section 4.2 is not achieved.

in Section 3. The number of neurons, the number of hidden layers and the learning rate of the
Adam optimizer are optimized to have the maximum validation accuracy by Hyperband. We allow
variation between 1 and 6 hidden layers, between 100 and 600 neurons per hidden layer and between
10−4 and 10−2 for the learning rate. We use the optimized hyperparameters to train a NN model
for a maximum of 50 epochs and stop the training if the TensorFlow implementation of Early
Stopping if the Cross Entropy Loss changes by less than 0.01 after 5 epochs.

Our trained models are used to make a classification on every hypothesis in the test dataset.
Each prediction made by the predict method from the Tensorflow models yields a confidence
value for each possible classification (i.e. particle). We take the highest confidence value across all
hypotheses in an event and label that event with the corresponding particle type. A no ID label is
given for any PID that has a confidence of less than 0.4. In the same way as Section 4.1, we consider
positive pions and muons and negative pions and muons as the same particles. The confusion
matrix for our charged NN model is shown in Figure 2b and the confusion matrix for our neutral
NN model is shown in Figure 3.

5 Results

In this section we present the results of our traditional PID cuts and NN PID. We make a direct
comparison between these two methods and demonstrate advantages of NNs in PID. We also

– 8 –

Figure 3: The confusion matrix for our NN PID for neutral particles; the generated particle is
shown on the y-axis and the particle classified by our neutral NN model is shown on the x-axis.
Particles that do not meet the confidence criteria discussed in Section 4.2 are classified with a no
identification (no ID) label.

determine the feature importance to find which features in the simulation data are most important
in particle classification for our NNs.

5.1 Comparing PID techniques

The confusion matrix showing the PID accuracies for each particle in our sample is shown in Figure
2.

5.2 Advantages of Neural Networks in PID

5.3 Feature Importance with Shapley Values

We need to make a distinction between Shapley values and SHapley Additive exPlanations (SHAP)
[11].

To analyze the PIDs made by our neural network, we use Shapley values to assess the importance
of each feature. For a given PID made by our models, a Shapley value for a given feature measures
the average contribution of that feature across the entire feature space. A Shapley value is computed
for each feature for a given classification by considering possible permutations of features and then
taking the average of all marginal contributions by a feature to the resultant prediction. In our case,
this process is very computationally expensive, so we use random.choice from NumPy [12] to
randomly sample 1,000 classifications from our test sample. We take the median Shapley value for
each particle and for each feature label used in our neural network models.

The absolute value of our SHAP values for positively charged particles is shown in Figure 4,
negatively charged particles in Figure 5, and neutral particles in Figure 6.

– 9 –

Figure 4: We denote the SHAP value magnitude as the absolute value of our SHAP values. We
randomly sample 103 hypotheses from our test sample for each particle type and calculate the SHAP
value [11] for each feature. Here we show only the 𝑞 = +1 particles from our charged particle NN
model; 𝑝 in pink, 𝐾+ in red, 𝑒+ in light blue and 𝜋+ | 𝜇+ in green. The black line in each box plot
represents the mean SHAP value in a given box plot. The upper and lower end of a given box plot
represents the 75th and 25th percentile of the data, respectively. Each of the feature labels used to
train our charged NN model from Table 1 are shown on the x-axis unless a SHAP value of zero is
calculated, then these features are omitted.

Figure 5: The same as Figure 4, except we show SHAP value magnitudes for particles with 𝑞 = −1.
We show 𝑝 in pink, 𝐾− in red, 𝑒− in light blue and 𝜋− | 𝜇− in green.

– 10 –

Figure 6: The same as Figure 4 and 5, except we show the SHAP value magnitudes for particles
included in our neutral particle NN model. We show 𝛾 in pink, 𝐾0

𝐿
in red and 𝑛 in light blue.

6 Discussion

6.1 Sample selection bias

7 Conclusion

Acknowledgments

This is the most common positions for acknowledgments. A macro is available to maintain the
same layout and spelling of the heading.

Note added. This is also a good position for notes added after the paper has been written.

References

[1] S. Adhikari, C.S. Akondi, H. Al Ghoul, A. Ali, M. Amaryan, E.G. Anassontzis et al., The GLUEX
beamline and detector, Nuclear Instruments and Methods in Physics Research A 987 (2021) 164807
[2005.14272].

[2] Geant4 Collaboration, “Geant4: A Simulation Toolkit for the Passage of Particles through Matter.”
Astrophysics Source Code Library, record ascl:1010.079, Oct., 2010.

[3] J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asai, T. Aso et al., Recent developments in
GEANT4, Nuclear Instruments and Methods in Physics Research A 835 (2016) 186.

[4] D.R. Cox, The regression analysis of binary sequences, Journal of the Royal Statistical Society:
Series B (Methodological) 20 (1958) 215
[https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1958.tb00292.x].

[5] Z. Shangnan and Y. Wang, Quantum Cross Entropy and Maximum Likelihood Principle, arXiv
e-prints (2021) arXiv:2102.11887 [2102.11887].

– 11 –

https://doi.org/10.1016/j.nima.2020.164807
https://arxiv.org/abs/2005.14272
https://doi.org/10.1016/j.nima.2016.06.125
https://doi.org/https://doi.org/10.1111/j.2517-6161.1958.tb00292.x
https://doi.org/https://doi.org/10.1111/j.2517-6161.1958.tb00292.x
https://arxiv.org/abs/https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1958.tb00292.x
https://doi.org/10.48550/arXiv.2102.11887
https://doi.org/10.48550/arXiv.2102.11887
https://arxiv.org/abs/2102.11887

[6] D.P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, arXiv e-prints (2014)
arXiv:1412.6980 [1412.6980].

[7] R.H.R. Hahnloser, R. Sarpeshkar, M.A. Mahowald, R.J. Douglas and H.S. Seung, Digital selection
and analogue amplification coexist in a cortex-inspired silicon circuit, 405 (2000) 947.

[8] A.F. Agarap, Deep Learning using Rectified Linear Units (ReLU), arXiv e-prints (2018)
arXiv:1803.08375 [1803.08375].

[9] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh and A. Talwalkar, Hyperband: A Novel
Bandit-Based Approach to Hyperparameter Optimization, arXiv e-prints (2016) arXiv:1603.06560
[1603.06560].

[10] P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau et al., SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python, Nature Methods 17 (2020) 261.

[11] S. Lundberg and S.-I. Lee, A Unified Approach to Interpreting Model Predictions, arXiv e-prints
(2017) arXiv:1705.07874 [1705.07874].

[12] C.R. Harris, K.J. Millman, S.J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau et al., Array
programming with NumPy, Nature 585 (2020) 357.

– 12 –

https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1038/35016072
https://doi.org/10.48550/arXiv.1803.08375
https://doi.org/10.48550/arXiv.1803.08375
https://arxiv.org/abs/1803.08375
https://doi.org/10.48550/arXiv.1603.06560
https://arxiv.org/abs/1603.06560
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.48550/arXiv.1705.07874
https://doi.org/10.48550/arXiv.1705.07874
https://arxiv.org/abs/1705.07874
https://doi.org/10.1038/s41586-020-2649-2

	Introduction
	Monte Carlo Simulation Dataset
	DNN model description
	Cross Entropy Loss Function
	Adam Optimizer
	Structure and Activation Functions
	Hyperband

	Methods
	Manual PID
	Neural Network PID

	Results
	Comparing PID techniques
	Advantages of Neural Networks in PID
	Feature Importance with Shapley Values

	Discussion
	Sample selection bias

	Conclusion

