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Tension (T) is constant, so it can be divided out:
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The derivatives need to be distributed, because Width (W) is dependent on x:
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The matrix of the fourth derivative, Ho is symmetric and Hermitian. Therefore
all its eigenfunctions are orthogonal.

Ho =
d4

dx4

WHoy + 2W ′y′′′ +W ′′y′′ = WΩω2y
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The rest of the expression can be notated as H ′, a non-symmetric matrix.
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H ′y − Ωω2y = 0

Given the values of Ω and ω, it’s now possible to solve the homogenous equation
for the coefficients of the linear combination of functions which define y.
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