$$
\begin{gathered}
y_{n}=\sum_{m} c_{n m} f_{m} \\
\left(f_{l}, y_{n}\right)=\sum_{m} c_{n m}\left(f_{l}, f_{m}\right) \\
c_{n l}=\left(f_{l}, y_{n}\right) \\
H_{0} f_{n}(x)=\Omega \omega_{0_{n}}^{2} f_{n}(x) \\
E \frac{d^{2}}{d x^{2}}\left(W T^{3} \frac{d^{2} y_{n}}{d x^{2}}\right)=-\rho W T \frac{d^{2} y_{n}}{d t^{2}}
\end{gathered}
$$

Tension (T) is constant, so it can be divided out:

$$
E \frac{d^{2}}{d x^{2}}\left(W \frac{d^{2} y}{d x^{2}}\right)=-\frac{\rho W}{T^{2}} \frac{d^{2} y}{d t^{2}}
$$

The derivatives need to be distributed, because Width (W) is dependent on x :

$$
\begin{gathered}
E \frac{d}{d x}\left(\frac{d W}{d x} \frac{d^{2} y}{d x^{2}}+W \frac{d^{3} y}{d x^{3}}\right)=\frac{\rho W}{T^{2}} \omega^{2} y \\
\frac{d^{2} W}{d x^{2}} \frac{d^{2} y}{d x^{2}}+2 \frac{d W}{d x} \frac{d^{3} y}{d x^{3}}+W \frac{d^{4} y}{d x^{4}}=\frac{\rho W}{E T^{2}} \omega^{2} y \\
\Omega=\frac{\rho}{E T^{2}}
\end{gathered}
$$

The matrix of the fourth derivative, H_{o} is symmetric and Hermitian. Therefore all its eigenfunctions are orthogonal.

$$
\begin{gathered}
H_{o}=\frac{d^{4}}{d x^{4}} \\
W H_{o} y+2 W^{\prime} y^{\prime \prime \prime}+W^{\prime \prime} y^{\prime \prime}=W \Omega \omega^{2} y \\
H_{o} y+2 \frac{W^{\prime} y^{\prime \prime \prime}}{W}+\frac{W^{\prime \prime} y^{\prime \prime}}{W}=\Omega \omega^{2} y \\
H_{o} y+\frac{1}{W}\left(2 W^{\prime} y^{\prime \prime \prime}+W^{\prime \prime} y^{\prime \prime}\right)=\Omega \omega^{2} y
\end{gathered}
$$

The rest of the expression can be notated as H^{\prime}, a non-symmetric matrix.

$$
\begin{aligned}
& H^{\prime}=2 W^{\prime} \frac{d^{3}}{d x^{3}}+W^{\prime \prime} \frac{d^{2}}{d x^{2}} \\
& H_{o} y+\frac{1}{W} H^{\prime} y-\Omega \omega^{2} y=0
\end{aligned}
$$

Given the values of Ω and ω, it's now possible to solve the homogenous equation for the coefficients of the linear combination of functions which define y.

