Calculations:

The cantilever system can be modeled as a beam of midline length L, width $\mathrm{W}(\mathrm{x})$, and thickness $\mathrm{T}(\mathrm{x})$. It is assumed to have uniform density p and Young's Modulus E. The function $\mathrm{y}(\mathrm{x}, \mathrm{t})$ represents the postition of the cantilever midline along the y-axis, and the cantilever is fixed so that $y(0, t)=0$ and $y^{\prime}(0, t)=0$. The system can be analyzed by considering the forces on any arbitrarily small widthwise section of length dx , and thickness du. The forces in question are tension and shear, $\mathrm{F}(\mathrm{x})$ and $\mathrm{F}(\mathrm{y})$ respectively. Fx arises from the bending of the material and its bulk elasticity. Fy arises from the fact that the plank must remain a single, continuous piece. Over the bent section indicated by dx,

$$
\Delta x=\frac{R+u}{R} d x-d x=\frac{U}{R} d y
$$

Where R is given by the second derivative for $y(x)$.

$$
\begin{gathered}
y-y_{0}=\frac{1}{2} y^{\prime \prime} d x^{2} \\
R^{2}=d x^{2}+\left(y_{0}+\frac{1}{2} y^{\prime \prime} d x^{2}\right)^{2}
\end{gathered}
$$

Because $R=y_{0}$,

$$
\begin{gathered}
0=d x^{2}+R y^{\prime \prime} d x^{2}+\theta\left(d x^{2}\right)^{2} \\
y^{\prime \prime}=-\frac{1}{R} \\
R=-\frac{1}{y^{\prime \prime}} \\
\Delta x=-u y^{\prime \prime} d x
\end{gathered}
$$

For the plank to remain continuous, there must be present both shear ($\mathrm{S}(\mathrm{x})$) and torque. These can be represented as the derivatives in respect to time of each other and $\mathrm{y}(\mathrm{x})$.

$$
\begin{aligned}
& S(x-d x)=S(x)+\frac{d^{2} y}{d x^{2}} d m \\
& \Gamma(x-d x)=\Gamma(x)+S(x) d x
\end{aligned}
$$

This indicates that $S^{\prime}=-p W T \frac{d^{2} y}{d t^{2}}, \Gamma^{\prime}=-S$ and $\Gamma^{\prime \prime}=p W T \frac{d^{2} y}{d t^{2}}$. By balancing these equations for force we can define an equation from which we can derive a solution.

$$
E \frac{d^{2}}{d x^{2}}\left(W T^{3} \frac{d^{2} y}{d x^{2}}\right)=-p W T \frac{d^{2} y}{d t^{2}}
$$

This fourth-order differential equation shows similarities to general wave equations, and because of this can support wave-like solutions. A system of conditions is required to solve for a particular solution in all cases; These can be found from the system boundary conditions.

The first scenario assumes the simplest possibility: that the plank width W and thickness T are constant. Simplifying the general equation under these conditions gives

$$
\frac{d^{4} y}{d x^{4}}=-\left(\frac{p}{E T^{2}}\right) \frac{d^{2} y}{d t^{2}}
$$

Because of the oscillatory properties of the plank's vibration, it is given that

$$
y=y_{0} e^{i(k x-\theta t)}
$$

As part of the definition of the eigenmode, $\mathrm{y}(\mathrm{x}, \mathrm{t})$ can be further partitioned into the product of two seperate one-variable equations.

$$
y(x, t)=y_{a}(x) e^{i \theta t}
$$

This allows y to be defined as an eigenfunction in the following equation

$$
\frac{d^{4} y_{a}}{d x^{4}}=\left(\frac{p}{E T^{2}}\right) \theta^{2} y_{a}
$$

Where the fourth derivative is a linear Hermitian operator which returns the function multiplied by a scalar, equivalent to the the constant term. Because it is Hermitian, it is possible to build a general solution for this equation using a linear combination of terms which satisfy certain conditions.

$$
\begin{gathered}
y_{a}=a_{1} e^{i k x}+a_{2} e^{-i k x}+a_{3} e^{k x}+a_{4} e^{-k x} \\
k=\left(\frac{p \theta^{2}}{E T^{2}}\right)^{\frac{1}{4}}
\end{gathered}
$$

Using the four known boundary conditions, a system of equations can be developed to solve for the constant coefficents. The boundary conditions are:

$$
\begin{gathered}
y_{a}(0)=y_{a}^{\prime}(0)=0 \\
y_{a}^{\prime \prime}(L)=y-a^{\prime \prime \prime}(L)=0
\end{gathered}
$$

These make the following system of equations.

$$
\begin{gathered}
a_{1}+a_{2}+a_{3}+a_{4}=0 \\
i\left(a_{1}-a_{2}\right)+\left(a_{3}-a_{4}\right)=0 \\
-a_{1} e^{i k L}-a_{2} e^{-i k L}+a_{3} e^{k L}+a_{4} e^{-k L}=0 \\
-i a_{1} e^{i k L}+i a_{2} e^{-i k L}+a_{3} e^{k L}-a_{4} e^{-k L}=0
\end{gathered}
$$

Because this is a homogenous system of equations, there exist solution sets only for specific values of k. Each set represents a different eigenmode in the plank's vibration. It is possible to solve for k by considering the matrix system created by these four equations.

$$
\left[\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & a_{4} \\
i a_{1} & -i a_{2} & a_{3} & -a_{4} \\
-e^{i k L} & -e^{-i k L} & e^{k L} & e^{-k L} \\
-i e^{i k L} & i e^{-i k L} & e^{k L} & -e^{-k L}
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The determinant of the augmented matrix must be zero, because it is singular. If we let $a=e^{i} k L$ and $b=e^{k} L$, then the determinant is:

$$
\begin{gathered}
8 i+\frac{2 i}{a b}+\frac{2 i b}{a}+\frac{21 a}{b}+2 i a b=0 \\
4 a b+1+b^{2}+a^{2}+a^{2} b^{2}=0 \\
(a+b)^{2}+(a b+1)^{2}=0
\end{gathered}
$$

There are no possible real solutions for (a, b); a must be complex. If $a=e^{i \omega}$, then:

$$
\begin{gathered}
a_{r}+b= \pm a_{i} b \\
a_{r} b+1=\mp a_{i} \\
a_{r}=\frac{-2 b}{b^{2}+1} \\
a_{i}= \pm \frac{1-b^{2}}{1+b^{2}}
\end{gathered}
$$

Leading to the following identity, which allows a series of k values to be solved for, each of which corresponds to a different eigenmode.

$$
\begin{gathered}
\omega=\arctan \frac{b^{2}-1}{2 b}= \pm \ln b \\
k=1.8751,4.6941,7.8532,10.9955,14.1372,17.2788,20.4204,23.5619, \ldots
\end{gathered}
$$

Note: Omega here does not mean frequency, as it does elsewhere.

It is now possible to solve for the constants in the solutions to the differential equation by substituting each k value into the homogenous matrix of boundary conditions above and determining the values of a_{1}, a_{2}, a_{3} and a_{4}.

For the case of non-uniform width, the values of the constants in the solutions can be found from the original equation. For example, for a diamond shaped cantilever with length equal to its width:

$$
\begin{gathered}
\frac{d W}{d x}= \begin{cases}2 & 0 \leq x \leq \frac{L}{2} \\
-2 & \frac{L}{2} \leq x \leq L\end{cases} \\
(2 x) \frac{d^{4} y}{d x^{4}}+(4) \frac{d^{3} y}{d x^{3}}-\Omega(2 x) y=0
\end{gathered}
$$

$$
\frac{d^{4} y}{d x^{4}}+\frac{2}{x} \frac{d^{3} y}{d x^{3}}-\Omega y=0
$$

This equation can by symbolized using the following operators:

$$
H=H_{0}+H^{\prime}
$$

And can be solved for the necessary constants using the following steps.

$$
\begin{gathered}
y_{i}^{(4)}=\Omega \omega^{2} y_{i} \\
H_{0} y_{i}=e_{i} y_{i} \\
H=H_{0}+H^{\prime} \\
H y(x)=H \sum_{i} c_{i} y_{i}(x)=\epsilon y(x) \\
\sum_{i} c_{i}\left(H y_{i}\right) \\
\sum_{i} c_{i}\left(H_{0} y_{i}+H^{\prime} y_{i}\right) \\
\sum_{i} c_{i} \epsilon y_{i}=\sum_{i} c_{i} e_{i} y_{i}+\sum_{i} c_{i} H^{\prime} y_{i} \\
\left(y_{j}, y_{i}\right)=\delta_{i j} \\
\left(y_{j}, H^{\prime} y_{i}\right)=H_{i j}^{\prime} \\
c_{j} \epsilon=c_{j} e_{j}+\sum_{i} c_{i} H_{i j}^{\prime} \\
H_{i j}^{\prime} c_{i}=c_{j}\left(\epsilon-e_{j}\right) \\
\left(H_{i j}^{\prime}+e_{j} \delta_{i j}\right) c_{i}=\epsilon c_{j} \\
\left(H_{j i}^{\prime}+e_{i} \delta_{j i}\right) c_{j}=\epsilon c_{j}
\end{gathered}
$$

