
Calculations:
The cantilever system can be modeled as a beam of midline length L, width

W(x), and thickness T(x). It is assumed to have uniform density p and Young’s
Modulus E. The function y(x,t) represents the postition of the cantilever midline
along the y-axis, and the cantilever is fixed so that y(0,t)=0 and y’(0,t)=0. The
system can be analyzed by considering the forces on any arbitrarily small width-
wise section of length dx, and thickness du. The forces in question are tension
and shear, F(x) and F(y) respectively. Fx arises from the bending of the material
and its bulk elasticity. Fy arises from the fact that the plank must remain a
single, continuous piece. Over the bent section indicated by dx,

∆x =
R+ u

R
dx− dx =

U

R
dy

Where R is given by the second derivative for y(x).

y − y0 =
1

2
y′′dx2

R2 = dx2 + (y0 +
1

2
y′′dx2)2

Because R = y0,
0 = dx2 +Ry′′dx2 + θ(dx2)2

y′′ = − 1

R

R = − 1

y′′

∆x = −uy′′dx

For the plank to remain continuous, there must be present both shear (S(x))
and torque. These can be represented as the derivatives in respect to time of
each other and y(x).

S(x− dx) = S(x) +
d2y

dx2
dm

Γ(x− dx) = Γ(x) + S(x)dx

This indicates that S′ = −pWT d2y
dt2 , Γ′ = −S and Γ′′ = pWT d2y

dt2 . By balancing
these equations for force we can define an equation from which we can derive a
solution.

E
d2

dx2
(WT 3 d

2y

dx2
) = −pWT

d2y

dt2

This fourth-order differential equation shows similarities to general wave equa-
tions, and because of this can support wave-like solutions. A system of con-
ditions is required to solve for a particular solution in all cases; These can be
found from the system boundary conditions.
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The first scenario assumes the simplest possibility: that the plank width W
and thickness T are constant. Simplifying the general equation under these
conditions gives

d4y

dx4
= −(

p

ET 2
)
d2y

dt2

Because of the oscillatory properties of the plank’s vibration, it is given that

y = y0e
i(kx−θt)

As part of the definition of the eigenmode, y(x,t) can be further partitioned into
the product of two seperate one-variable equations.

y(x, t) = ya(x)eiθt

This allows y to be defined as an eigenfunction in the following equation

d4ya
dx4

= (
p

ET 2
)θ2ya

Where the fourth derivative is a linear Hermitian operator which returns the
function multiplied by a scalar, equivalent to the the constant term. Because it
is Hermitian, it is possible to build a general solution for this equation using a
linear combination of terms which satisfy certain conditions.

ya = a1e
ikx + a2e

−ikx + a3e
kx + a4e

−kx

k = (
pθ2

ET 2
)

1
4

Using the four known boundary conditions, a system of equations can be devel-
oped to solve for the constant coefficents. The boundary conditions are:

ya(0) = y′a(0) = 0

y′′a(L) = y − a′′′(L) = 0

These make the following system of equations.

a1 + a2 + a3 + a4 = 0

i(a1 − a2) + (a3 − a4) = 0

−a1eikL − a2e
−ikL + a3e

kL + a4e
−kL = 0

−ia1eikL + ia2e
−ikL + a3e

kL − a4e
−kL = 0

Because this is a homogenous system of equations, there exist solution sets only
for specific values of k. Each set represents a different eigenmode in the plank’s
vibration. It is possible to solve for k by considering the matrix system created
by these four equations.
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a1 a2 a3 a4
ia1 −ia2 a3 −a4

−eikL −e−ikL ekL e−kL

−ieikL ie−ikL ekL −e−kL



a1
a2
a3
a4

 =


0
0
0
0


The determinant of the augmented matrix must be zero, because it is singular.
If we let a = eikL and b = ekL, then the determinant is:

8i+
2i

ab
+

2ib

a
+

21a

b
+ 2iab = 0

4ab+ 1 + b2 + a2 + a2b2 = 0

(a+ b)2 + (ab+ 1)2 = 0

There are no possible real solutions for (a, b); a must be complex. If a = eiω,
then:

ar + b = ±aib

arb+ 1 = ∓ai

ar =
−2b

b2 + 1

ai = ±1 − b2

1 + b2

Leading to the following identity, which allows a series of k values to be solved
for, each of which corresponds to a different eigenmode.

ω = arctan
b2 − 1

2b
= ± ln b

k = 1.8751, 4.6941, 7.8532, 10.9955, 14.1372, 17.2788, 20.4204, 23.5619, ...

Note: Omega here does not mean frequency, as it does elsewhere.

It is now possible to solve for the constants in the solutions to the differential
equation by substituting each k value into the homogenous matrix of boundary
conditions above and determining the values of a1, a2, a3 and a4.

For the case of non-uniform width, the values of the constants in the solutions
can be found from the original equation. For example, for a diamond shaped
cantilever with length equal to its width:

dW

dx
=

{
2 0 ≤ x ≤ L

2

−2 L
2 ≤ x ≤ L

(2x)
d4y

dx4
+ (4)

d3y

dx3
− Ω(2x)y = 0
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d4y

dx4
+

2

x

d3y

dx3
− Ωy = 0

This equation can by symbolized using the following operators:

H = H0 +H ′

And can be solved for the necessary constants using the following steps.

y
(4)
i = Ωω2yi

H0yi = eiyi

H = H0 +H ′

Hy(x) = H
∑
i

ciyi(x) = εy(x)

∑
i

ci(Hyi)

∑
i

ci(H0yi +H ′yi)

∑
i

ciεyi =
∑
i

cieiyi +
∑
i

ciH
′yi

(yj , yi) = δij

(yj , H
′yi) = H ′ij

cjε = cjej +
∑
i

ciH
′
ij

H ′ijci = cj(ε− ej)

(H ′ij + ejδij)ci = εcj

(H ′ji + eiδji)cj = εcj
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