

Calibration of the Tagger Detectors with GlueX Commissioning Data

Alex Barnes	University of Connecticut
	Tagger Microscope
Nathan Sparks	The Catholic University of America
	Tagger Hodoscope

Outline

- Hall D experimental program
- Photon beamline overview
- Tagging detector calibrations

Hall-D Experimental Program

- Search for hybrid mesons, resonances with <u>gluonic field excitations</u> (GlueX)
 - Gluon acts as a constituent particle
 - Exotic J^{PC} states possible (0⁻⁻, 0⁺⁻, 1⁻⁺, 2⁺⁻)
 - Exotic states provide unambiguous signal
- Charged π polarizability (γγ →π⁺π⁻)
 - \circ α_{π} Electric polarizability, β_{π} Magnetic polarizability
 - Measure (α_{π} β_{π})
 - \circ σ(γγ →π⁺π⁻) from Primakoff production
- Γ(η →γγ) from Primakoff method
 - Determine light quark mass ratio
 - Measure $\eta \eta'$ mixing angle

Photon Beam

- 12 GeV e⁻ beam
- Coherent bremsstrahlung from 20 μ m diamond wafer
- Coherent peak: 8.4 9.0 GeV, 40% linearly polarized
- 3.4 mm collimator 75 m downstream from radiator
- Magnet bends e⁻'s into tagger detectors (3.0 11.8 GeV)

Tagger Microscope

Pair Spectrometer Detectors Installed in the Hall

Status of Pair Spectrometer Installation

Pair Spectrometer

Pair Spectrometer (PS) Time-walk

$$f = a + b \left(\frac{p}{T}\right)^c$$

f is the fit function where a, b, and c are fit parameters, P is the pedestal subtracted pulse height, and T is the adc threshold

Pair Spectrometer (PS) Time-walk

Before Sigma = 167 ps

After Sigma = 119 ps

Average sigma for all 16 modules is 120 ps

Tagger Microscope (TAGM) Time-walk

Initial dt vs pulse peak plot for a typical single channel

Corrected time difference distribution for a typical channel, sigma = 215 ps

Tagger Hodoscope (TAGH) Time-walk

Typical time-walk curves for the tagger hodoscope

Average sigma for all channels is 180 ps

Tagger Efficiency

- The tagger efficiency is the fraction of events that are seen by both the tagger and PS compared to all of the events seen by the PS
- Due to a physical shift in the TAGM, there is a dip in the efficiency

Summary

- GlueX has successfully collected commissioning data
- These data have been used in calibrating the tagging detectors
- The timing resolution of the PS and tagger detectors are at or near design resolution
- The efficiency of the tagger detectors is near design efficiency
- Commissioning/opportunistic physics data will be taken spring 2016 at 12 GeV