Gluonic Excitations Workshop Newport News, May 14-16, 2003

Partial Wave Analysis results from JETSET

Richard Jones University of Connecticut

representing the Jetset collaboration with members from Bari, CERN, Erlangen, Freiburg, Genova, Illinois, Jülich, Oslo, Uppsala

- the Jetset experiment
- PWA formalism and MC tests
- results from analysis of full data set

OZI-suppressed, may form glueball resonances in s-channel

Morningstar et.al., LAT991004

R.T. Jones Newport News, May 14-16, 2003

Complete data set from Jetset

_point	Ν(φφ)	N(b.g.)	point	Ν(φφ)	N(b.g.)	point	Ν(φφ)	N(b.g.)
1	326	95	5	1005	589	9	1318	877
2	414	225	6	1262	585	10	1056	943
3	626	270	7	1782	886	11	936	1592
4	840	369	8	1375	868	12	707	1666

PWA Accounting

J	values of the waves	included i	in the p	partial	wave	analy	sis.
	All waves up to J=4,	L=4 in th	e final	state v	vere a	llowe	d.

wave	J ^{PC}	L initial	S initial	L final	S final
1	0-+	0	0	1	1
2	0++	1	1	0	0
3	0++	1	1	2	2
4	1++	1	1	2	2
5	2++	1	1	0	2
6	2++	1	1	2	0
7	2++	1	1	2	2
8	2++	1	1	4	2
9	2-+	2	0	1	1
10	2-+	2	0	3	1
11	2++	3	1	0	2
12	2++	3	1	2	0
13	2++	3	1	2	2
14	2++	3	1	4	2
15	3++	3	1	2	2
16	3++	3	1	4	2
17	4-+	4	0	3	1
18	4++	3	1	2	2
19	4++	3	1	4	0
20	4++	3	1	4	2
21	4++	5	1	2	2
22	4++	5	1	4	0
23	4++	5	1	4	2

PWA Procedure

Getting started:

- Fit with all waves free
 - gives full freedom to the fit -> definition of "good fit"
 - errors on amplitudes are large, meaningless
- Reduce the set of allowed waves in search of a minimal set that gives a good description of the entire data set
 - gives priority to an economical description
 - adequacy judged in comparison with full fit
 - require same set of waves for all mass bins

We found 3 dominant waves all 2⁺⁺

Method:

- 1. Group the data into mass bins with sufficient statistics
- 2. For each bin, try all waves one-by-one, keep best, repeat

Sets agreed on 3 top waves.

3. Go back to beginning and put in waves two-by-two trying all pairs of waves together, then add one-by-one

Sets chose same set of 3 waves as dominant.

Ambiguities

2 kinds:

1. Essential ambiguities

- correspond to invariances in angular distributions from PWA expansion
- continuous invariances : global phases (2)
- discrete invariances: undetermined signs (4)
- no others believed to exist for $2(V \rightarrow 2P)$
- irreducible even in limit of good acceptance and high statistics

2. Statistical ambiguities

- correspond to different angular distributions which cannot be discriminated given the available data
- discrete (different local maxima in likelihood)
- discovered by systematic numerical search
- reducible by good acceptance and high statistics
- relatively few in this data set

Monte Carlo test

Ingredients: 🗸 1 resonant wave, two non-resonant

- experimental acceptance through simulation
- ✓ same reconstruction, analysis as for real data

R.T. Jones Newport News, May 14-16, 2003

Results of Monte Carlo test

R.T. Jones Newport News, May 14-16, 2003

Monte Carlo test #2

- + include incoherent background
- + uniform angular distribution for background
- not orthogonal to waves -- check for leakage

Results of Monte Carlo test #2

PWA Results

- 3-wave fit identical to Monte Carlo test #2
- simultaneous fit in mass and angular distributions
- φφ cross section now corrected for acceptance based on <u>measured</u> angular distribution

R.T. Jones Newport News, May 14-16, 2003

Possible Interpretation

☆ narrow peak seen in raw cross section

- ☆ PWA reveals 3 dominant waves in 2⁺⁺
- rapid phase motion seen in two waves as expected for a Breit-Wigner resonance

Quality of the fit

To check goodness of fit, use likelihood ratio test

• Define $\chi^2 = -2 \ln \left(\frac{L}{L_0}\right)$

where L_0 is the likelihood maximum over the full parameter space and L is the likelihood maximum over some restricted part.

> For large N, behaves like chi-square with $n-n_0$ d.o.f.

R.T. Jones Newport News, May 14-16, 2003

Newport News, May 14-16, 2003

Conclusions

☆ PWA has been performed of the reaction

 $\mathbf{p}\,\overline{\mathbf{p}} \to \phi\,\phi$

- ☆ 3 dominant waves were found, all 2⁺⁺.
- ☆ Rapid phase motion seen in two waves consistent with a narrow 2⁺⁺ resonance.

BUT

- ☆ The fit shows significant improvement if more waves are added, up to 6.
- ☆ Statistical errors do not permit a clear interpretation of 6-wave solution, but it does not favour a single narrow resonance.

AND

Possible interference between the $\phi \phi$ and an underlying f_0, f_0 background should be taken into account.

R.T. Jones Newport News, May 14-16, 2003

R.T. Jones Newport News, May 14-16, 2003