Preliminary Exam: Statistical Mechanics, Tuesday January 15, 2019, 9am-noon

Answer a total **THREE** questions out of **FOUR**. If you turn in excess solutions, the ones to be graded will be picked at random. Each answer must be presented **separately** in an answer book, or on consecutively numbered sheets of paper stapled together. Make sure you clearly indicate who you are and the problem you are solving. Double-check that you include everything you want graded, and nothing else. **Some possibly useful information**:

Sterling's asymptotic series :
$$\ln N! \approx N \ln N - N + \frac{1}{2} \ln[2\pi N]$$
 as $N \to \infty$,

$$\int_0^\infty dx \ x \ \exp(-\alpha x^2) = \frac{1}{2\alpha}, \qquad \int_{-\infty}^{+\infty} dx \ \exp(-\alpha x^2 \ + \ \beta x) = \sqrt{\frac{\pi}{\alpha}} \exp(\frac{\beta^2}{4\alpha}) \text{ with } \operatorname{Re}(\alpha) > 0.$$

- 1. An ideal gas of identical atoms is enclosed in a large spherical container of volume V. Atomic particles can be bound by container walls and form a two-dimensional (2D) ideal gas with the particle energy $\varepsilon(p) = -\varepsilon_0 + p^2/2m$, where ε_0 is a positive constant describing the surface binding energy, m is the atomic mass, and p is the 2D momentum. The gas temperature T is high and the atomic particles obey the Boltzmann statistics.
 - (a) Calculate the partition functions $Z_S(N_S, T)$ and $Z_V(N_V, T)$ of surface and volume gases, if the container wall and volume particles are considered as two non-interacting subsystems with the fixed numbers of surface and volume atoms N_S and N_V respectively. Determine the partition function $Z(N_S + N_V, T)$ for the entire system.
 - (b) Calculate the system free energy $F(N_S + N_V, T) = E TS$ and find the average particle energy $\langle \varepsilon \rangle$ for the entire container gas using the results obtained in (a).
 - (c) Calculate the system partition function $Z'(N_S + N_V, T)$, the free energy $F'(N_S + N_V, T)$ and the average particle energy $\langle \varepsilon' \rangle$ if the volume and wall gases merged isothermally into a single gas, exchanging atoms and energies.
 - (d) Explain the difference between results obtained for (b) and (c), and compute an average number of the surface atoms N'_{S} at conditions of part (c).
- 2. The gas of non-interacting Fermi atoms with the spin s = 1/2 is embedded into a thermal bath, supporting the constant chemical potential μ and temperature T of the gas particles. The Fermi system includes n_0 non-degenerate energy levels $(1 \le n \le n_0)$ and the single particle energy of the *n*-th level depends on the quantum number n as $\varepsilon_n = \varepsilon_0 \log(n)$, where ε_0 is a positive constant.
 - (a) For the given value of the chemical potential μ and temperature $T = \varepsilon_0/k$ (where k is the Boltzmann constant), calculate an average number of particles $N = N(\mu, \varepsilon_0, n_0)$ in the fermionic system, assuming that $n_0 \gg 1$.

Hint: The sum over n can be replaced with an integral over dn, if $n_0 \gg 1$.

- (b) From the results obtained in (a), determine the leading terms of the low-temperature asymptotic behavior of N, if the parameter $\gamma = \exp(-\mu/kT) = \exp(-\mu/\varepsilon_0) \ll 1 \ (\gamma \to 0)$.
- (c) Determine the number of atoms N_b in the system with the same energy levels, if the particles are bosons with the spin s = 0 and the thermal bath temperature $T = \varepsilon_0/k$. The chemical potential is negative: $\mu < 0$. Describe the behavior of the Bose system, if $\mu \to 0$.

3. Consider the Hamiltonian for an Ising anti-ferromagnet

$$H = J \sum_{\langle i,j \rangle} S_i S_j - h \sum_i S_i,$$

where J > 0, $S_i = \pm 1$, h is the magnetic field, and $\langle i, j \rangle$ designates all pairs i and j that are nearest neighbors. For simplicity, assume a one-dimensional lattice of N spins with periodic boundary conditions, i.e., $S_0 = S_N$. For strong interaction energy J, one expects the spins in this system to anti-align.

(a) Derive the mean-field theory for this system by dividing it into two sub-lattices (e.g., sublattice 1 consists of all odd *i*, sublattice 2 of all even *i*). Write the mean-field Hamiltonian and the magnetizations for both sublattices directly. Show that the self-consistent resulting equations are given by

$$m_o \equiv \langle S_{i,odd} \rangle = \tanh(\beta h - 2\beta J m_e),$$

$$m_e \equiv \langle S_{i,even} \rangle = \tanh(\beta h - 2\beta J m_o).$$

(b) Find the value of the sub-lattice magnetizations m_o and m_e in the paramagnetic regime for small magnetic field h, i.e., linear order in h. (*Hint: Remember the series expansion*)

$$\tanh x = x - \frac{1}{3}x^3 + \mathcal{O}(x^4).)$$

- (c) Derive the transition temperature to the anti-ferromagnetic phase for zero magnetic field. Describe, qualitatively or graphically, the anti-ferromagnetic solutions for the two magnetizations.
- (d) From the previous parts, argue why the difference in the magnetizations can serve as an order parameter for this system, i.e., the transition between the paramagnetic and anti-ferromagnetic phases happens where this quantity changes between zero and non-zero values. Thus, the critical temperature changes in this case – does it get higher or lower? For this, find a selfconsistent equation (similar to the one in part (a)) for the difference in magnetizations, using the formula

$$\tanh x - \tanh y = \tanh(x - y)(1 - \tanh x \tanh y).$$

The only terms that now still contain h can be resolved to the lowest order in h, using the paramagnetic solution for m_o and m_e from part (b). While this is a form that is hard to resolve, the qualitative answer to the question above can now be read off immediately.

- 4. A material is found to have a thermal expansion coefficient $\alpha_P = v^{-1} (R/P + a/RT^2)$ and an isothermal compressibility $\kappa_T = v^{-1} (Tf(P) b/P)$ Here v = V/n is the molar volume, T is the temperature, P the pressure, and R the molar Boltzmann constant $(= N_{\text{mol}}k_B)$. Both a and b are constants. (Hint: remember that both the thermal expansion coefficient and the compressibility are derivatives of the volume by what? –, normalized by the volume, to keep the quantities intensive.)
 - (a) Find f(P).
 - (b) Find the equation of state.
 - (c) Under what condition is this material stable? (*Hint: Look at the compressibility.*)