
Preliminary Exam: Statistical Mechanics, Tuesday January 15, 2019, 9am-noon

Answer a total THREE questions out of FOUR. If you turn in excess solutions, the ones to be graded will
be picked at random. Each answer must be presented separately in an answer book, or on consecutively
numbered sheets of paper stapled together. Make sure you clearly indicate who you are and the problem
you are solving. Double-check that you include everything you want graded, and nothing else.
Some possibly useful information:

Sterling′s asymptotic series : lnN ! ≈ N lnN −N +
1

2
ln[2πN ] as N →∞,
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β2

4α
) with Re(α) > 0.

1. An ideal gas of identical atoms is enclosed in a large spherical container of volume V . Atomic
particles can be bound by container walls and form a two-dimensional (2D) ideal gas with the
particle energy ε(p) = −ε0 + p2/2m, where ε0 is a positive constant describing the surface binding
energy, m is the atomic mass, and p is the 2D momentum. The gas temperature T is high and the
atomic particles obey the Boltzmann statistics.

(a) Calculate the partition functions ZS(NS, T ) and ZV (NV , T ) of surface and volume gases, if the
container wall and volume particles are considered as two non-interacting subsystems with the
fixed numbers of surface and volume atoms NS and NV respectively. Determine the partition
function Z(NS +NV , T ) for the entire system.

(b) Calculate the system free energy F (NS +NV , T ) = E−TS and find the average particle energy
〈ε〉 for the entire container gas using the results obtained in (a).

(c) Calculate the system partition function Z ′(NS +NV , T ), the free energy F ′(NS +NV , T ) and
the average particle energy 〈ε′〉 if the volume and wall gases merged isothermally into a single
gas, exchanging atoms and energies.

(d) Explain the difference between results obtained for (b) and (c), and compute an average number
of the surface atoms N ′S at conditions of part (c).

2. The gas of non-interacting Fermi atoms with the spin s = 1/2 is embedded into a thermal bath,
supporting the constant chemical potential µ and temperature T of the gas particles. The Fermi
system includes n0 non-degenerate energy levels (1 ≤ n ≤ n0) and the single particle energy of the
n-th level depends on the quantum number n as εn = ε0 log(n), where ε0 is a positive constant.

(a) For the given value of the chemical potential µ and temperature T = ε0/k (where k is the Boltz-
mann constant), calculate an average number of particles N = N(µ, ε0, n0) in the fermionic
system, assuming that n0 � 1.
Hint: The sum over n can be replaced with an integral over dn, if n0 � 1.

(b) From the results obtained in (a), determine the leading terms of the low-temperature asymp-
totic behavior of N , if the parameter γ = exp(−µ/kT ) = exp(−µ/ε0)� 1 (γ → 0).

(c) Determine the number of atoms Nb in the system with the same energy levels, if the particles
are bosons with the spin s = 0 and the thermal bath temperature T = ε0/k. The chemical
potential is negative: µ < 0. Describe the behavior of the Bose system, if µ→ 0.
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3. Consider the Hamiltonian for an Ising anti-ferromagnet

H = J
∑
<i,j>

SiSj − h
∑
i

Si,

where J > 0, Si = ±1, h is the magnetic field, and < i, j > designates all pairs i and j that
are nearest neighbors. For simplicity, assume a one-dimensional lattice of N spins with periodic
boundary conditions, i.e., S0 = SN . For strong interaction energy J , one expects the spins in this
system to anti-align.

(a) Derive the mean-field theory for this system by dividing it into two sub-lattices (e.g., sublattice
1 consists of all odd i, sublattice 2 of all even i). Write the mean-field Hamiltonian and
the magnetizations for both sublattices directly. Show that the the self-consistent resulting
equations are given by

mo ≡ 〈Si,odd〉 = tanh(βh− 2βJme),

me ≡ 〈Si,even〉 = tanh(βh− 2βJmo).

(b) Find the value of the sub-lattice magnetizations mo and me in the paramagnetic regime for
small magnetic field h, i.e., linear order in h. (Hint: Remember the series expansion

tanhx = x− 1

3
x3 +O(x4).)

(c) Derive the transition temperature to the anti-ferromagnetic phase for zero magnetic field. De-
scribe, qualitatively or graphically, the anti-ferromagnetic solutions for the two magnetizations.

(d) From the previous parts, argue why the difference in the magnetizations can serve as an order
parameter for this system, i.e., the transition between the paramagnetic and anti-ferromagnetic
phases happens where this quantity changes between zero and non-zero values. Thus, the
critical temperature changes in this case – does it get higher or lower? For this, find a self-
consistent equation (similar to the one in part (a)) for the difference in magnetizations, using
the formula

tanhx− tanh y = tanh(x− y)(1− tanhx tanh y).

The only terms that now still contain h can be resolved to the lowest order in h, using the
paramagnetic solution for mo and me from part (b). While this is a form that is hard to
resolve, the qualitative answer to the question above can now be read off immediately.

4. A material is found to have a thermal expansion coefficient αP = v−1 (R/P + a/RT 2) and an
isothermal compressibility κT = v−1 (Tf(P )− b/P ) Here v = V/n is the molar volume, T is the
temperature, P the pressure, and R the molar Boltzmann constant (= NmolkB). Both a and b are
constants. (Hint: remember that both the thermal expansion coefficient and the compressibility are
derivatives of the volume – by what? –, normalized by the volume, to keep the quantities intensive.)

(a) Find f(P ).

(b) Find the equation of state.

(c) Under what condition is this material stable? (Hint: Look at the compressibility.)
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