
Preliminary Exam: Quantum Mechanics, Friday August 23, 2019. 9:00-1:00

Answer a total of any FOUR out of the five questions. Put the solution to each problem in a separate blue book and put
the number of the problem and your name on the front of each book. If you submit solutions to more than four problems,
only the first four problems as listed on the exam will be graded.

Some possibly useful information

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
=

∂2

∂r2
+

2

r

∂

∂r
+

1

r2
∂2

∂θ2
+

cos θ

r2 sin θ

∂

∂θ
+

1

r2 sin2 θ

∂2

∂φ2

=
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2
∂2

∂φ2
+

∂2

∂z2

∇ψ = ex
∂ψ

∂x
+ ey

∂ψ

∂y
+ ez

∂ψ

∂z
= er

∂ψ

∂r
+ eθ

1

r

∂ψ

∂θ
+ eφ

1

r sin θ

∂ψ

∂φ
= eρ

∂ψ

∂ρ
+ eφ

1

ρ

∂ψ

∂φ
+ ez

∂ψ

∂z
.

Hermite polynomial = Hn(x) = (−1)nex
2 dn

dxn
e−x

2

, H0(x) = 1 , H1(x) = 2x , H2(x) = 4x2 − 2

Laguerre = Ln(r) = er
dn

drn
(
rne−r

)
, associated Laguerre = Lqn+q(r) = (−1)q

dq

drq
Ln+q(r) .

Legendre polynomial = Pl(x) =
1

2ll!

dl

dxl
(x2 − 1)l , P0(x) = 1 , P1(x) = x , P2(x) =

1

2
(3x2 − 1) ,∫ +1

−1
dwP`(w)P`′(w) =

2

(2`+ 1)
δ``′

associated Legendre polynomial = Pml (x) = (1− x2)|m|/2
d|m|

dx|m|
Pl(x)

spherical harmonic = Y ml (θ, φ) = (−1)m
[

(2l + 1)(l − |m|)!
4π(l + |m|)!

]1/2
Pml (cos θ)eimφ ,

Y 0
0 =

(
1

4π

)1/2

, Y 0
1 =

(
3

4π

)1/2

cos θ , Y ±11 = ∓
(

3

8π

)1/2

sin θe±iφ

Y 0
2 =

(
5

16π

)1/2

(3 cos2 θ−1) , Y ±12 = ∓
(

15

8π

)1/2

sin θ cos θe±iφ , Y ±22 =

(
15

32π

)1/2

sin2 θe±2iφ

spherical Bessels : jl(r) = (−1)`r`
(

1

r

d

dr

)`(
sin r

r

)
, nl(r) = (−1)(`+1)r`

(
1

r

d

dr

)` (cos r

r

)
,

with asymptotic behavior j`(r)→
cos(r − `π/2− π/2)

r
, n`(r)→

sin(r − `π/2− π/2)

r
.

j0(r) =
sin r

r
, n0(r) = −cos r

r
, j1(r) =

sin r

r2
− cos r

r
, n1(r) = −cos r

r2
− sin r

r
,

j2(r) =
3 sin r

r3
− sin r

r
− 3 cos r

r2
, n2(r) = −3 cos r

r3
+

cos r

r
− 3 sin r

r2
.

eikr cos θ =

∞∑
`=0

(2`+ 1)i`j`(kr)P`(cos θ).

1



1. (a) Eigenstates of the hydrogen atom obey the Schrodinger equation
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The wave functions can be written as ψ(r, θ, φ) = Rn,`(r)Y
m
` (θ, φ) where Rn`(r) is the radial wave function and n

is the principle quantum number, and can also be written as eigenkets of the form |n, `,m〉. The first few radial
functions are of the form

R10(r) = 2(a0)−3/2e−r/a0 , R20(r) =
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where a0 = ~2/me2. Determine the energies of all of the ψ(r, θ, φ) wave functions that have these three radial
functions, and determine the degeneracy of all energy levels with n = 1 and all energy levels with n = 2.

(b) The atom is now perturbed by a constant electric field E0 pointing in the z direction so that the interaction is of
the form

V = eE0r cos θ.

Determine the change in the ground state energy up to second order in V . Should your calculation involve a
summation over states you do not need to actually perform the summation, but you do need to indicate which
terms in the summation are non-zero. You may neglect contributions from continuum states.

(c) Consider all energy levels with n = 2, and consider matrix elements Vij = 〈i|V |j〉 where |i〉 and |j〉 are any of the
n = 2 wave functions. For which (i, j) combinations are these matrix elements non-zero? Calculate the change in
energy of each of the n = 2 eigenstates to first order in V .

Hint: You may find it easier to do parts (b) and (c) in the |n, `,m〉 basis.

2. Suppose the particle creation and annihilation operators a†i and ai that obey
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can be algebraically expressed in terms of a new set of operators b†i and bi that obey the same canonical commutation
relations:
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(The operators b†i and bi are often said to “create/annihilate quasiparticles.”) The commutation relations above imply
that there is a unique state |0b〉 that is annihilated by all bi; this state is usually referred to as the quasiparticle vacuum,

the so-called Fock space states of the form b†i |0b〉 are the one-quasiparticle states, b†i b
†
j |0b〉 are the two-quasiparticle

states, etc. It is convenient to make a unitary operator transform:

bi = UaiU
†, b†i = Ua†iU

†, (2)

where U is a unitary operator in the Fock space, usually of the form eX for some anti-Hermitian polynomial X in ai
and a†i .

(a) Show that the unitarity of U automatically guarantees that bi and b†i satisfy (1), and that the quasiparticle state
|0b〉 = U |0a〉 is the quasiparticle vacuum where |0a〉 is the original vacuum state that the ai annihilate.

(b) Verify that for X =
∑
n

(
cna
†
n − c∗nan

)
, one gets the c-number shift eXane

−X = an − cn.

(c) Now let X =
∑
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1
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(
eiλn(a†n)2 − e−iλn(an)2

)
(with real ηn and λn). Show that for U = eX , (2) defines a so-called

Bogoliubov transformation:

bi = ai cosh ηi − eiλia†i sinh ηi, b†i = a†i cosh ηi − e−iλiai sinh ηi.

(d) In order to see the utility of the Bogoliubov transformation, consider the simple case of one creation/annihilation
operator pair with λ = π. This gives b = a cosh η + a† sinh η. Use this transformation to obtain the eigenvalues of
the following Hamiltonian:

H = ~ωa†a+
1

2
V
(
a2 + a†

2
)
,

where V is constant. Also give the upper limit on V for which this can be done.

Hint: write H in terms of the b, b† operators, and find a value for η that gives H the form of a simple harmonic
oscillator
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3. (a) In quantum mechanics there is a parity operator P that effects P−1~xP = −~x where ~x is the 3-dimensional position
operator, while leaving time unchanged. Under the parity operator how do the following operators transform: the
momentum ~p, the angular momentum ~L, the spin operator ~S of a spin one-half electron, the electric field ~E, and

the magnetic field ~B. Consider the Hamiltonian H = − ~2

2m∇
2 +V (~x) where V (~x) is even under parity. What does

this imply for the behavior of the eigenstates of H under parity?

(b) Also in quantum mechanics there exists a time reversal operator T that effects the transformation T : t→ t′ = −t.
Assuming the validity of the Schrödinger equation and the symmetry of the Hamiltonian H = − ~2

2m∇
2 + V (~x)

under time reversal, show that for the time reversal operator, the following property has to be valid:

T−1(−i)T = i.

(c) If T preserves the norm of the states it acts on, show that a general way to write this operator is T = UK, where
U is unitary and K is the complex conjugation operator. What is U for spinless, nondegenerate particles? What
is thus the value of T 2 for those particles?

(d) Consider a non-relativistic spin- 12 particle at rest with spin operator ~S. Explain (without calculation) why we

need to get T−1~ST = −~S.

(e) With ~S ∝ ~σ, where ~σ is the vector of Pauli matrices, show that T−1~ST = −~S does indeed hold if we set U = σy.

4. (a) Consider rotations through an angle ϕ about an axis n̂, and denote ϕ = ϕ n̂. Given the total angular mo-
mentum J that generates infinitesimal rotations, upon an active rotation an arbitrary state |ψ〉 transforms to
|ψ′〉 = e−iϕ·J/~|ψ〉, and operators remain unchanged. Show that when the rotation angle ϕ is “infinitesimal”, the
expectation value of an arbitrary operator A changes upon the rotation of the system by

δ〈A〉 = − i
~
〈ψ|[A,ϕ · J]|ψ〉 . (3)

Note: the classical notion of vector V entails certain transformation properties under infinitesimal rotations, namely

δVk = εijk ϕiVj , (4)

where εijk are the standard Levi-Civita symbols and the summation convention is implied. For a three-component
operator V to be a vector operator, we require that its expectation value transforms under rotations like a classical
vector. A combination of (3) and (4) then shows that the expectation value of a vector operator in an arbitrary state
and arbitrary rotation must satisfy

εijk ϕi〈Vj〉 = − i
~
〈[Vk,ϕ · J]〉. (5)

Also bear in mind that the expectation values of two operators are the same in an arbitrary state precisely when the
operators are the same.

(b) Show that if the commutators of a three-component operator V with the angular momentum J satisfy

[Vi, Jj ] = i~ εijk Vk , (6)

then (5) is valid.

(c) Conversely, (6) is also a necessary condition for (5). Show this, for instance, by studying equation (5) in the special
cases when ϕ is a unit vector in each coordinate direction.

Equation (6) is the practical criterion for vector operators in quantum mechanics.

5. (a) Using relativistic kinematics, show that the leading relativistic correction to the kinetic energy of an electron is

Ek = . . .− p4

8m3
ec

2
+ . . . .

(b) Find the leading correction to the energy of the ground state of hydrogen due to relativistic kinematics.
Hint: (ψ, p4ψ) = (p2ψ, p2ψ). Formally p2ψ has a delta function singularity, but the delta function does not
contribute in this problem. The ground state wave function is proportional to e−r/a0 .
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