
Preliminary Exam: Quantum Mechanics, Friday August 25, 2017. 9:00-1:00

Answer a total of any FOUR out of the five questions. Use the blue solution books and put
the solution to each problem in a separate blue book and put the number of the problem on the
front of each blue book. Be sure to put your name on each blue book that you submit. If you
submit solutions to more than four problems, only the first four problems as listed on the exam
will be graded.
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1. Consider the nodal behavior of solutions to the nonrelativistic Schrödinger equation and
answer the following:

(a) For a particle moving in a one-dimensional potential, assume there are two eigenfunc-
tions ψ1 and ψ2 with corresponding eigenvalues E1 < E2. Show that between any two
consecutive zeros (nodes) of ψ1, there exists at least one node of ψ2.

Hint: Consider the Wronskian

W [ψ1, ψ2] = ψ1ψ
′

2 − ψ
′

1ψ2,

and find an expression for the derivative W
′

in terms of E1, E2, ψ1 and ψ2. Choose an
interval of two consecutive zeros of ψ1, say [a, b] where b > a. Show that W (b)−W (a)
has the opposite sign to that of the integral of W

′
over the interval [a, b], if ψ2 does

not change sign in this interval.

(You may asssume that the potential is bounded in this interval [a, b].)

(b) When the radial solutions to a three-dimensional Hydrogen atom are considered:

(i) is the result in part (a) valid for 2s and 3s wavefunctions. Explain your anwer
using a sketch.

(ii) is the result in part (a) valid for 2s and 3d wavefunctions. Explain your anwer
using a sketch.

(iii) In case (ii) which one of the 2s and 3d wavefunctions functions extends furthest?

2. Consider the following Hamiltonian for two spin 1/2 particles (A) and (B):

H = λσ(A) · σ(B)

where σ(A) = (σ1, σ2, σ3), σ(B) = (σ1, σ2, σ3) are defined using the Pauli spin matrices
and λ is a constant.

(a) Express H in terms of raising and lowering operators for the individual spins and the
projections of the individual spins along the z-axis.

(b) Write down a 4× 4 matrix representation with respect to the basis set

{|+〉 |+〉 , |+〉 |−〉 , |−〉 |+〉 , |−〉 |−〉}

defined using spin projections along the z-axis.

(c) Find the eigenvalues and eigenvectors of the Hamiltonian in this basis.

2



3. The time-independent Schrödinger equation for a nonrelativistic particle moving in an N -
dimensional space (N =1, 2, or 3) can be written in the coordinate representation:

Ĥψ(r) = Eψ(r), Ĥ =
p̂

2m
+ V (r),

where p̂ = −ih̄∇ is the momentum operator, m is the particle mass, and V (r) is a scalar
potential.

(a) Derive the Schrödinger equation for the wave function a(p) in the momentum repre-
sentation:

a(p) =
1

(2πh̄)N/2

∫
dNr exp

(
−ip · r
h̄

)
ψ(r).

(b) Write down this equation for the one-dimensional (N = 1) attractive potential de-
scribed by the Dirac delta function V (r) = −V0δ(r/b), where V0 and b are positive
constants. Starting from the Schrödinger equation in momentum space, derive the
energy eigenvalue of the single bound state supported by this potential.

(c) What is the normalized momentum-space wave function a(p) corresponding to the
eigenvalue you found in part (b)?

4. A beam of mono-energetic particles each with energy E and mass m is scattered by a
general spherically symmetric potential U(r) that vanishes as r → ∞. The scattering
amplitude f(θ) can be expressed via the partial wave scattering amplitudes f`(θ) and the
scattering phase shifts δ`(k) as

f(θ) =
`=∞∑
`=0

f`(θ) =
1

2ik

`=∞∑
`=0

(2`+ 1)
[
e2iδ`(k) − 1

]
P`(cos θ),

where ` is the angular momentum, θ is the scattering angle, P`(cos θ) are Legendre poly-
nomials, and k = (2mE/h̄2)1/2 is the wave number.

(a) Show that the total scattering cross section σ can be calculated using the imaginary
part of the forward scattering amplitude (the optical theorem) as:

σ =
4π

k
Im[f(θ = 0)].

(b) Consider the potential well U(r) = −U0 if r < r0, and U(r) = 0 if r > r0, where U0 is
a positive constant.

(ii) For this potential find the scattering phase shift δ`=0(k) for s-wave scattering using
the solution of the Schrödinger equation for the spherical wave with ` = 0.

(ii) For this potential calculate the scattering cross section in the limit k → 0 knowing
that in this limit only s-wave scattering is important.
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5. (a) A quantum-mechanical system has a time-independent Hamiltonian H0 and an eigen-
spectrum of states |n〉 with energies En. While in its ground state it is subjected to
a time-dependent perturbation V (t) starting at a time t = 0. Derive the first order
probability for finding this system in any other of its states at a later time t.

(b) Consider a rigid rotator (i.e. a bar shaped system of fixed separation) of moment of
inertia I about an axis through its center perpendicular to the direction of the bar,
with Hamiltonian H0 = L2/2I and electric dipole moment d. Suppose that while it is
in its ground state it is subjected to a perturbation

V (t) = −d · E(t)

due to a time-dependent external electric field

E(t) = ẑE0e
−t/τ ,

which points in the z-direction and which is switched on at time t = 0. Here E0 is a
time-independent constant. Determine to which of its excited states the rotator can
make transitions in lowest order in V (t), and calculate the transition probabilities for
finding the rotator in each of these states at time t =∞.

(c) If instead of being in its ground state, the rotator was in a state with angular momen-
tum L = 3 at the time V (t) was switched on, determine the states to which it would
be able to make transitions in lowest order in V (t). (For this part do not calculate the
transition probabilities.)
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