
Preliminary Exam: Quantum Mechanics, Friday August 26, 2016. 9:00-1:00

Answer a total of any FOUR out of the five questions. For your answers you can use either
the blue books or individual sheets of paper. If you use the blue books, put the solution to
each problem in a separate book. If you use the sheets of paper, use different sets of sheets
for each problem and sequentially number each page of each set. Be sure to put your name
on each book and on each sheet of paper that you submit. If you submit solutions to more
than four problems, only the first four problems as listed on the exam will be graded.
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1. A system with energy E1 is an eigenstate |1〉 of a time-independent Hamiltonian H0,
when a perturbation V (t) is switched on at time t = 0.

(a) Derive the probability in first-order perturbation theory that the system will be
found in a different eigenstate |2〉 with energy E2 at a time t→∞.

(b) Suppose now that the system is a single spinless particle of mass M and charge e in
a central Coulomb potential and the quantum numbers of the initial state are labeled
|n, `,m〉 in the usual way. The perturbation is a magnetic field B(t) = B0e

−λt pointing
in the x direction, which adds a term eLxB(t)/(2Mc) to the Hamiltonian. Using the
result of (a), find

(i) the quantum number selection rules for allowed transitions to a second state |n′, `′,m′〉,
(ii) the associated energy differences for the allowed transitions,

(ii) the probabilities for each allowed transition.

2. (a) A rotation of a system of angular momentum J through an angle θ about an
axis parallel to a vector n̂ of unit length is represented by the unitary operator U =
exp(−iθn̂ · J/h̄). Show that in the case of a spin-half particle, this reduces to

U = cos(θ/2)I − i(n̂ · σ) sin(θ/2)

where σ = (σx, σy, σz) represents the three Pauli matrices.

(b) A beam of neutral spin one-half fermions with a net magnetic dipole moment enters
a Stern-Gerlach apparatus traveling along the z axis. The Stern-Gerlach apparatus is
oriented so that it measures the projection of the spin along axis â, which lies in the
xy plane. The beam then enters a second Stern-Gerlach apparatus which has been
rotated about the z axis by angle θ so that it measures the spin projection along a
different axis b̂, also in the xy plane. Use the result of part (a) to show that the spin-up
and spin-down states of the fermion with respect to the second magnet are related to
those of the first magnet as

|b̂ :↑〉 = cos(θ/2)|â :↑〉 − i sin(θ/2)|â :↓〉
and

|b̂ :↓〉 = cos(θ/2)|â :↓〉 − i sin(θ/2)|â :↑〉.
Reminder: A Stern-Gerlach apparatus is a device for setting up an inhomogeneous
magnetic field.

3. (a) Show that for a one-dimensional bound system with a potential V (x) that is ev-
erywhere finite, the eigenvalues of the Schrödinger equation have to be nondegenerate.
Give an example of a two- or three-dimensional system where some eigenvalues are
degenerate.

(b) Find the eigenstates and eigenvalues of the Schrödinger equation for the one-
dimensional potential

V (x > 0) = Kx2/2, V (x ≤ 0) =∞.
(Hint: You may find it useful to express the eigenstates and eigenvalues in terms of
the one-dimensional harmonic oscillator solutions.)
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4. The Hamiltonian of a charged particle in a magnetic field is given by the formula:

H =
1

2m

(
p− e

c
A(r)

)2

,

where e and m are the particle charge and mass and A(r) is the vector potential of
the magnetic field.

(a) Find the most general conditions under which the particle Hamiltonian can be
written in the form:

H =
p2

2m
− e

mc
A(r) · p +

e2

2mc2
A2(r)

(b) Show that the velocity obeys mv = p−(e/c)A, calculate the commutation relations
for velocity projections [vi, vj], and express them via the components Bi of the magnetic
field where (i, j) = (x, y, z).

(c) Determine the energy and wave function of the ground state in a uniform magnetic
field B of magnitude B, if the magnetic quantum number m is zero, and in cylindrical
coordinates the vector potential is of the form

Aφ =
1

2
Bρ, Aρ = 0, Az = 0.

5. A particle of the mass m and energy E = h̄2k2/2m moves in an arbitrary potential
V (r).

(a) Show that the solution to the integral equation

ψk(r) = eik·r − m

2πh̄2

∫
d3r′

eik·|r−r
′|

|r− r′|
V (r′)ψk(r

′)

satisfies the Schrödinger equation that describes the particle’s motion.

(b) Show for E = 0 that an integral form of the Schrödinger equation for a spherically
symmetric (s-wave) wave function and spherically symmetric potential V (r) is given
by the expression:

ψs(r) = 1− m

2πh̄2

∫
d3r′V (r′)ψs(r

′)g(r, r′),

where

g(r, r′) = θ(r − r′)1

r
+ θ(r′ − r) 1

r′
.

(c) Derive an analytic expression for the s-wave scattering amplitude due to a spheri-
cally symmetric short-range potential (i.e. one for which V (r > r0) = 0 for a finite r0)
that can be considered as a perturbation.

Hint: The asymptotic behavior of the wave function of the particle at large distances
r � r0 is ψ(r) = eikr + fs/r, where fs is the s-wave scattering amplitude.
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