
Preliminary Examination: Quantum Mechanics, 08/24/2012

Answer a total of FOUR questions out of FIVE. If you turn in excess solutions, the ones

to be graded will be picked at random.

Each answer must be presented separately in an answer book, or on consecutively num-

bered sheets of paper stapled together. Make sure you clearly indicate who you are, and the

problem you are solving. Double-check that you include everything you want graded, and

nothing else.
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1. Dirac notation is cumbersome in problems involving complex and hermitian conjugates,

so let us presently denote the inner product of two states ψ and φ by (ψ, φ).

a) Show that an arbitrary linear operator Q may always be written in the form

Q = A+ iB, where A and B are both hermitian operators.

b) Suppose that (ψ,Qψ) = 0 for an arbitrary state ψ. Then the same also holds

true for the state Ψ = ψ + λφ, no matter what the states ψ and φ and the scalar

λ might be. By first picking λ = 1 and then λ = i, show that (ψ,Qφ)=0 for all

states ψ and φ.

c) Show that if (ψ,Qψ) = 0 for an arbitrary state ψ, then Q is in fact the zero

operator that maps all states to the zero vector.

d) Take it as given that the expectation value of a hermitian operator A in any state

ψ is real. Based on the stated results of parts (a) and (c), show that the converse

also holds true, that an operator Q whose expectation value is real in all states ψ

must be hermitian.

Hint: You may freely use a result stated in one part of the problem in the other parts,

even if you cannot derive it.

2. Consider the relativistic expression for kinetic energy

E(p) =
√
p2c2 + (mc2)2 ' mc2 +

p2

2m
− p4

8m3c2

If a particle like this is bound to a harmonic oscillator potential V (x) = 1
2
mω2x2 the

oscillator is no longer exactly harmonic, and the transition frequency between two

adjacent states Ωn = (En+1−En)/h̄ will depend on the index n. The effect is small for

non-relativistic oscillators, but with the fantastic precision of spectroscopic techniques

it is occasionally detectable even when the oscillator is near its ground state. Find Ωn

in the limit of weak nonlinearity.

Hint: The form of the number operator for the simple harmonic oscillator is N = a†a,

where

a =

√
mω

2h̄

(
x+ i

p

mω

)
To reduce the tedium, you may want to use units in which m = ω = h̄ = 1



3. Consider a one-electron “atom” with the unperturbed Hamiltonian H0

H0 =
1

2m
p2 + V (r)

This electron with charge q is also subjected to external electromagnetic radiation. In

the electric dipole approximation we ignore both the variation of the electric field across

the atom and the magnetic field, so that the vector and scalar potentials may be chosen

to be of the form ~A(~r, t) = ~A(t), φ = 0. Now, with certain canonical transformations,

the usual minimum-coupling Hamiltonian gives two different forms for the atom-field

interaction

H ′d·E = −q~r · ~E(t)

H ′p·A = − q

m
~p · ~A(t)

a) By studying the commutator [x,H0] show that the matrix elements of position

and momentum between the eigenstates |n〉 of H0 satisfy 〈`| ~p |n〉 = imω`n 〈`|~r |n〉,
where ω`n = (E` − En)/h̄ is the frequency difference between the states |`〉 and

|n〉.

b) Both H ′d·E and H ′p·A are used in the analysis of light-matter interactions. This

gives rise to the alarming possibility that the calculation of the same quantity

could give two different results depending on which form of the interaction is

used. However, this does not happen frequently. Suppose the atom is driven

by electromagnetic fields such that ~A(t) tends to zero smoothly with t → ±∞.

Consider transitions from some initial (t = −∞) state of the atom |n〉 to the

other states using first-order time dependent perturbation theory. Show that the

transition probabilities after the fields have turned back to zero (t =∞), are the

same for the two choices of the interaction Hamiltonian.



4. A particle of mass m obeying the 1D

Schrodinger equation moves in the poten-

tial V (x) depicted in the figure at the right.

V (x) =


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

V0
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)

: |x| < a

∞ : |x| ≥ a

V(x)

V0

0
x

a-a

a) In the limit V0 → 0 with fixed a, what are the energy eigenvalues and eigenfunc-

tions of the system?

b) In the limit a→ 0 with fixed V0, what are the energy eigenvalues and eigenfunc-

tions of the system? Express the answers in terms of a small but non-zero value

for a.

c) What are the energy eigenvalues and eigenfunctions of the system for the general

case of arbitrary V0 and a?

You should label the zeros of Ai(z) as α1, α2,. . . and of its first derivative as α′
1, α

′
2,. . . in

order of increasing magnitude. Likewise the zeros of Bi(z) should be written as

β1, β2,. . . and of its first derivative as β′
1, β

′
2,. . . . You may find the following properties

of the Airy functions Ai and Bi to be useful in solving this problem.

Ai(z) →







1√
π
z−1/4 cos(ξ − π

4
) : z ≪ 0

1

2
√

π
z−1/4 e−ξ : z ≫ 0

Bi(z) →







− 1√
π
z−1/4 sin(ξ − π

4
) : z ≪ 0

1√
π
z−1/4 eξ : z ≫ 0

ξ =
2

3
|z|3/2, z =

[

2mV0

h̄2a

]1/3

(a0 − |x|)



5. A beam of massive spin-1 particles passes through a Stern-Gerlach apparatus and splits

into three output beams, each one corresponding to one of the allowed projections of

the particle spins onto a direction defined by the magnetic field inside the apparatus.

Unless stated otherwise, all directions in this problem are with respect to a fixed

laboratory coordinate system.

a) Using the standard raising and lowering operators of angular momentum J± =

Jx±iJy such that J± |jm〉 =
√
j(j + 1)−m(m± 1) |jm± 1〉, show that the three

matrices below form a valid representation of the spin operators for these particles.

Sx = h̄√
2


0 1 0

1 0 1

0 1 0

 Sy = h̄√
2


0 −i 0

i 0 −i
0 i 0

 Sz = h̄


1 0 0

0 0 0

0 0 −1


b) Suppose the incoming beam is initially completely unpolarized, so its density

operator in the matrix representation given in part (a) is

ρ0 =
1

3


1 0 0

0 1 0

0 0 1


This density operator may be written in terms of the three eigenstates of the spin

in the z direction as

ρ0 =
1

3
(|+〉 〈+| + |0〉 〈0| + |−〉 〈−|)

not only in the laboratory frame, but in any Cartesian coordinate system obtained

from the laboratory frame with an arbitrary rotation. Why?

c) What fraction of the particles in the unpolarized beam will pass through a Stern-

Gerlach filter set up in such a way that only the particles with the component of

the spin equal to 0 in the x direction are selected?




