
Preliminary Exam: Quantum Mechanics Friday 8/26/2011, 9:00-13:00

Answer a total of FOUR questions. For your answers you can use either the blue books or individual sheets of

paper. If you use the blue books, put the solution to each problem in a separate book. If you use the sheets of

paper, use different sets of sheets for each problem and sequentially number each page of each set. Be sure to put

your name on each book and on each sheet of paper that you submit. Some possibly useful information:
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Q.1 Consider an electron moving in the (xy) plane in a constant, vertical external magnetic field. The Schrödinger

equation takes the form

− h̄2

2m

[
∂2x +

(
∂y − i

eBx

h̄
)

)2
]
ψ(x, y) = Eψ(x, y) .

(a) Find the spectrum of this Hamiltonian using the ansatz ψn = eikyfn(x): Show that fn is, up to a normalization

constant, a shifted eigenfunction of the usual harmonic oscillator φn, fn(x) = φn(x − h̄k/eB), and that the

energies of the states are En = (h̄eB/m)(n+ 1/2) with n = 0, 1, . . .. The states with a fixed n make a “Landau

level.”

For a large enough system the results should not depend on boundary conditions as long as the boundary conditions

are such that the momentum operator −ih̄∂x is hermitian. Let us therefore study the electron in a rectangle with

the sides Lx and Ly using periodic boundary conditions: ψ(x, y) = ψ(x+ Lx, y) = ψ(x, y + Ly) for any x and y.

(b) Show that the periodicity in y requires that only a quantized subset of values of k is allowed. Find these values.

(c) Now estimate the degeneracy of the Landau level n by counting the values of k such that each wave function

fn(x) fits in the box in the x-direction. Thus show in the limit of large Lx and Ly [which permits one to neglect

small boundary effects associated with nonperiodicity of the functions fn(x)] that the degeneracy of a Landau

level is N = (eB/2πh̄)LxLy.

Q.2 A particle of mass m is traveling along the z axis with the wave number k. It scatters off a spherically symmetric

potential V (r) that effectively vanishes for r > a. After scattering the particle emerges with an asymptotic outgoing

wave function:

ψ(r) =

[
eikz + f(θ)

eikr

r

]
at r � a, where f(θ) is the scattering amplitude. In the asymptotic region the exact solution to the Schrödinger

equation may be also written as a sum of partial waves

ψ(r) =
∑

a` [j`(kr) cos δ` − n`(kr) sin δ`]P`(cos θ),

where each a` is an appropriate expansion coefficient and δ` is a phase shift.

(a) In terms of the phase shifts, show that the scattering amplitude f(θ) is given by

f(θ) =
1

k

∞∑
`=0

(2`+ 1)eiδ` sin δ` P`(cos θ).

You might find the following identity useful for this calculation:

eikr cos θ =

∞∑
`=0

(2`+ 1)i` j`(kr)P`(cos θ).

(b) Consider the special case of the finite-depth square well potential V (r > a) = 0, V (r < a) = −V0, where V0 > 0

is a constant. Determine the s-wave phase shift δ0 in the low-momentum limit with ka� 1.
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Q.3 Consider a one-dimensional harmonic oscillator with mass m and frequency ω in an energy eigenstate |n〉.
Very slowly, a force acting on the oscillator is turned on from zero to a “small” value F .

(a) Into what state does the initial state |n〉 evolve?

(b) How much does the expectation value of the position change?

It may be helpful to recall the expression for the lowering operator of the harmonic oscillator: a =

√
mω

2h̄

(
x+ i

p

mω

)
.

Q.4 The Heisenberg equation of motion for an operator O in quantum mechanics reads

i
d

dt
O = [O,H] .

Consider the Hamiltonian of an anharmonic oscillator

H =
p2

2m
+

1

2
mω2x2 +

λ

4!
x4 .

Here and below the system of units is such that h̄ ≡ 1.

(a) Write down explicitly Heisenberg equations of motion for the operators x, p, x2, and p2.

Taking the expectation value of the Heisenberg equation in a state |Ψ〉 we obtain the equation of motion for the

average of O,

i
d

dt
〈Ψ|O|Ψ〉 = 〈Ψ|[O,H]|Ψ〉 .

One can think either of the operator O (Heisenberg picture) or the wave function Ψ (Schrödinger picture) as time

dependent. In general this equation is not closed because its right-hand side involves expectation values of operators

distinct fromO. Let us however assume that the Schrödinger picture wave function Ψ can at all times be approximated

by a Gaussian

Ψ(x) =

(
1

πG

) 1
4

exp{−1

2
(x−X)(G−1 + iΣ)(x−X) + ixP} .

Here the real parameters X, P , G, and Σ depend on time, and the state is normalized to one. In this “Gaussian

approximation” the expectation values of the Heisenberg equations you have derived in (a) close, and reduce to a

set of equations of motion for the parameters of the Gaussian.

(b) Calculate the expectation values 〈x〉, 〈p〉, 〈x2〉, 〈p2〉, and 〈xp〉 in terms of the parameters X, P , G, and Σ.

(c) Let us now additionally set X = 0 and P = 0. Derive the equations of motion for G and Σ (known as “squeezing

parameters”) in this approximation. To derive these equations you can use the following relation between the

expectation values in a Gaussian state

< px3 >= 3 < px >< x2 > .

Also remember x3p = (px3)†.

Q.5 Consider the addition of two angular momentum operators according to L1 + L2 = L. Eigenstates |`1,m1〉 are

associated with the operators L2
1 and L1z, eigenstates |`2,m2〉 are associated with the operators L2

2 and L2z, and

eigenstates |L,M〉 are associated with the operators L2 and Lz.

(a) In terms of the quantum numbers (`1,m1) and (`2,m2), determine (i.e. derive as well as state the answer) the

values allowed for the quantum numbers (L,M).

(b) In terms of the basis vectors |`1,m1〉|`2,m2〉, construct the particular eigenstates |L,M〉 that possess the two

highest allowed positive M values.
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