Preliminary Exam: Quantum Physics 8/25/2006, 9:00-3:00

Answer a total of SIX questions of which at least TWO are from section A, and at least THREE are from
section B. For your answers you can use either the blue books or individual sheets of paper. If you use the
blue books, put the solution to each problem in a separate book. If you use the sheets of paper, use different
sets of sheets for each problem and sequentially number each page of each set. Be sure to put your name on
each book and each sheet of paper you submit.

Some possibly useful information:
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Section A: Statistical Mechanics

A.1  Consider a system of two noninteracting identical particles that may occupy any of three energy
levels: e, = ne, n=0,1,2. The energy state with energy e; = e is doubly degenerate. The system is in
thermal equilibrium at temperature I". For each of the following three cases carefully enumerate the energy
eigenstates of the system, and then calculate the canonical partition function and the average energy in each

of the cases.
(a) Particles obey Fermi statistics
(b) Particles obey Bose statistics

(c) Particles are distinguishable and obey Boltzmann statistics

A.2 (a) Consider a degenerate, spin one-half, non-interacting Fermi gas at zero temperature T' = 0. Find

an expression for the energy when the gas contains N particles in a volume V.

(b) Given such an expression for the internal energy of a Fermi system at zero temperature, how does

one determine the pressure?

Hint: Use the thermodynamic relation:

IEN dp
(W>T‘T(9T>v e

(¢) Find the isothermal compressibility

1 /8V
K=y (%)

of this gas at zero temperature T = 0.

It may be of help to recall that the Helmholtz free energy F' = F — T'S obeys the relation p = — (g{l;)T

A.3 Consider electromagnetic radiation that fills a cavity of volume V with a Planck energy distribution.
Initially w; is the frequency of the maximum of the curve of u;(w), the energy density per unit angular
frequency versus w. If the volume is expanded adiabatically to 2V, what is the final peak frequency wy of

the uy{w) distribution curve?
Section B: Quantum Mechanics

B.1 (a) Write down the Dirac equation for a relativistic spin 1/2 particle of mass m moving in a central
potential V(r).

(b) Identify the Hamiltonian for this system and show that the orbital angular momentum I = r x p is

not a constant of the motion.

{c¢) Then construct an appropriate angular momentum which is in fact conserved.
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B.2  The Hamiltonian responsible for parity violation in a one-electron atom can be parameterized as
Hpne = A s - (p&*(r) + 85%(r)p) , where A is a very small real constant, s is the electron spin, and p is its
momentum. Consider a simplified model of an alkali atom, treating it as a two-level, single-electron system

with levels [nsl/2> and ]np1/2> (for example, 65175 and 6py/, for the case of cesium).

(a) Use lowest-order perturbation theory to find an expression for the admixture v of the |np1 /g> wave
function into the Insl /2> state, in terms of a matrix element of Hpne. That is, find an expression for the

parameter v which appears in the first-order wave function, |n31 /2> mod = ]n31 /2> + ]npl /2> .

(b) Now evaluate the perturbation matrix element <np1 /2| Hene |n51 /2> explicitly, by taking advantage
of the fact that only the electronic wave functions near » = 0 are relevant due to the Dirac delta functions
in Hpne. In this small-r region the radial parts of the wave functions can be accurately approximated with

hydrogen-like wave functions, to within a Z-independent pair of multiplicative real constants b and c:

\/Z —Zr/ Z 8/ r —Zr/a
wms(r):ba—g/é—e o Ypplryec a_o ;Oe o,

To simplify the calculation, we will average over the angular dependence. After writing out p o< —iAV and
performing this average (you do not need to do this yourself!), the matrix element of s - p can be replaced

by a scalar version in a decoupled angular momentum basis,
<nP1/21 s p |n31/2>average o< —ihﬁ(s = %,ms = %' Sz Is = %, Me = %) {np, m; = 0|V, |ns,m; = 0).

In evaluating the angular part of the matrix element, you will probably find it useful to note that

What is the dependence of the perturbation on the atomic number Z7 Can you see why experiments are

typically performed on cesium, not on hydrogen or lithium?

(¢) Inthe above you should have found that the wave function admixture parameter  is purely imaginary.
In any case, demonstrate that o cannot be real by showing that if it were, there would be a first-order Stark

shift of the perturbed energy level ]n31 /2) in an external de electric field E = Epz. This would violate

mod
time-reversal symmetry, which is not a property of this particular Hamiltonian even though it does violate

parity.

B.3  Consider the addition of two angular momentum operators according to L; + Ly = L. Eigenstates
[¢1,m1) are associated with the operators L"l’ and Lj,, eigenstates |€3, m;) are associated with the operators

L3 and Ly, and eigenstates |L, M) are associated with the operators L? and L.

(a) In terms of the quantum numbers (£;,my) and (£, mz) determine (i.e. derive as well as state the
answer) the values which are allowed for the quantum numbers (L, M ).

(b} In terms of the basis vectors |£1,m1) and |¢;, mg) construct the particular eigenstates |L, M) which
possess the three highest allowed positive M values. (If you do not wish to solve this part for the general 4y,

£, for partial credit you can instead solve for the explicit case with 1 = 2, £, = 2.)
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B.4 A two-level system with levels |a) and |b) separated by energy fiwyp is subjected to a weak perturbation
from an electric field E = Ep 6(¢)  that is abruptly turned on at ¢ = 0. (Here 8 (¢) is the ‘Heaviside step
function #{t > 0) =1, # (t < 0) =0.) Even though the field is subsequently constant, the level populations
are time-dependent because of the abrupt turn-on. Assurne that there is a real, non-vanishing electric dipole
matrix element d = {b|ez |a) coupling the levels, so that the perturbation Hamiltonian can be written as the
operator

H' = dE(t) ) b| -+ dEob()b) (a] -

(a) Using lowest-order time-dependent perturbation theory or other methods of your choosing, find the
time-dependent population Py(t) in the upper level as a function of d, Fy, and wg. What is its maximum
value? How rapidly does the population oscillate with time?

(b) Compare your result with the value of Py(¢) calculated for a time-independent weak dc field E = FEy2
by use of time-independent perturbation theory, or other methods of your choosing. Does the comparison

make sense?

B.5 The expectation value of an operator Q(r, p,t) in a state ¥(r, t) is given as < Q >= [ d®ry* (r,1)Qy(r, ).
(a) Show for any v¥(r,t) which obeys the Schrodinger equation associated with the Hamiltonian H =
p?/2m -+ V(r) with real V (r) that Ehrenfest’s theorem holds, viz.

¢ s SP2 ¢ pom<cFom—< @
&7 T a P ™
(b) In the presence of electromagnetism an appropriate Hamiltonian is
—eA)?
g P—eA)l ed
2m

where A(r,t) and ¢(r,t) are vector and scalar electromagnetic potentials. Derive the appropriate Ehrenfest’s

theorem in this case to explicitly obtain the Lorentz force law.

B.6 A one-dimensional quantum-mechanical particle of mass m is placed in an attractive one-dimensional
delta function potential V(z) = —h*Xd(z)/m with positive X. The particle and the potential are located in
8 box with perfectly reflecting walls at z = /2 and = = —a/2 (i.e. at the walls of the box the potential is
given by V(a/2) = V(—a/2) = oo0).

(a) Determine the condition on the parameters of the problem for which the system will possess exactly
one bound state with negative energy eigenvalue E, and give its wave function.

(b) For the same system determine the energy eigenvalues and eigenvecfors for states with positive E.

(¢) How many negative energy bound states would the system possess in the event that the coefficient )
were negative?
Hints: The delta function §(z) is an even function of z (think what this means for the energy eigenfunctions),
which is given as the derivative df(z)/dz = §(x) where the Heaviside function 6(z) obeys 8(z > 0) = 1,
f{z < 0) = 0. In terms of the Heaviside function a general function f(z) can be written as f(z) =
fi(z)8(z) + fo(z)6(—x), with the the function [z| for instance being given by |z| = z8(z) ~ 20(~z).
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