Preliminary Exam: Quantum Physics 8/27/2004, 9:00-3.00

Answer a total of SIX questions of which at least TWO are from section 1, and at least THREE are from
section 2. Put each of your solutions in a separate answer book.
Some possibly useful information:
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Section 1: Statistical Mechanics

1.1  Consider a macroscopic harmonic oscillator, consisting of a particle of mass m and a spring with a
constant o, which is embedded in a viscous fluid of temperature T. The friction between the oscillator and
the fluid gives rise to a friction force that depends linearly on the velocity of the particle, with a friction
coefficient «.

(a) Show that the equation of motion for this system is given by

. . Fo(t
(1) + yolt) + wBa(t) = T2
where F. is a random force created by the stochastic impact of fluid molecules on the surface of the mass

m, and w§ = a/m denotes the square of the fundamental frequency of the oscillator.

(b) What is the mean square displacement {z?) of the oscillator at temperature 77 What is the mean square

velocity (%) 7

(c) Explain why, in thermal equilibrium, the random force F, and the velocity < must be correlated. What
is the correlation (F.z) 7 (Hint: What is the power of the random force on the particle? What is the power

dissipated by the friction term?)

(d) What is the mean square stochastic force (F2) ?

S

1.2 Consider a system of N particles with classical Hamiltonian

N 9
P;
= i ,
H(p,q) i§=1‘, o TU(@
where U(q) is the potential energy of the system.

(a) Show that the chemical potential x in this system can be decomposed into an ideal and an excess part,
W = ez + pid, Where p;g is the chemical potential of a classical ideal gas at the same temperature and

density, and ., depends only on the temperature 7', the volume V, and the potential energy function U(q).

(b) At regular intervals during a molecular dynamics simulation of this system, an additional “test” particle
is placed in the system at random locations, and the (instantaneous) change AU, in potential energy resulting
-from that addition is calculated. The test particle is then removed, and the molecular dynamics simulation

resumed.

WShow that the excess chemical potential p., is given by

AU,
pee = —KTInfexp ——=")vir -

Hint: Use the identity

u= (24  —aN+LV.T) - AN V,T) .
3N ) yr

1.3  Consider a system of eight identical particles with four distinct motional energy levels. How many
distinguishable microstates are there for this system, if the particles have spins
(ayJ=1/2 , (b)J=3/2, (¢ J=5/2 , (d) J=7/2 .
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Section 2: Quantum Mechanics

2.1 Consider the quantum mechanical creation and annihilation operators af and a, which satisfy the fun-
damental commutation relations [a, a'] = 1, and which can be expressed in terms of position and momentum

operators as

a:%(mWJr\/—;——;p)

(a) If In) = % |0 is the normalized eigenstate of the number operator, show that

(mlaln) = v/némn1

and |
1\ &
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(b) Now consider a slightly anisotropic three-dimensional harmonic oscillator, with w, = wy, = w, and
w? = w? + ©?, where @ < w. A charged particle moves in the field of this oscillator potential and is at the
same time exposed to a uniform magnetic field directed in the z direction. Assuming the Zeeman splitting
to be comparable to the splitting produced by the anisotropy of the harmonic potential, but small compared

to Aw, calculate to first order the energies of the components of the first excited state.

(¢) Check your answer in part (b) against the limiting cases of no anisotropy or no magnetic field.

2.2 Consider a particle moving in a one-dimensional periodic potential of period a:

Viz+a)=V(z) .

(a) State and give a proof of Bloch’s theorem for the behavior of the wavefunction of a particle in such a

periodic potential under a translation through one lattice spacing.

(b) Explain carefully the physical consequences of Bloch’s theorem for the spectrum of particles in such a

periodic potential.

(c) Consider a long periodic array of binding delta function wells, each of which represents an atom in a

one-dimensional periodic crystal:
N
Viz)=—g Y dz—la)
l=—N

Use Bloch'’s theorem to compute the discrirninant cos(K a), where K is the “quasi-momentum”.

(d) Make a rough sketch of the spectrum for the potential in part (c) for two different values of the binding
strength:

(1) when B%* =1 , (ii) when 3% = 10.



2.3 A particle of mass m is traveling along the z-axis with momentum of magnitude k. It scatters off a
spherically symmetric potential V(r) which vanishes for r > a. After scattering the particle emerges with

an outgoing wave function
B(F) = [ + F(0)e™ /1]
at r >> a where f(6) is the scattering amplitude. In the regionr >>a the exact solution to the Schrodinger

equation may be also written as a sum of partial waves
P(F) = Z aglje(kr)cosdy — ne(kr)sinde| Py(cost)

where each a, is an appropriate normalization constant and each & is a phase shift.

(a) Compare these two expressions for the outgoing wave function to show that

f(0)=(1/k) i(% +1)e¥%2 558, Py(cos)

£=0

M\Consider the case where the potential is taken to be a hard sphere of radius a
Vir)=c0 , r<a; V()=0 , r>a

(c) Find the total cross section in the limit where a < i

(d) Consider the case a >> % Show that in the forward direction the various partial wave contributions to

the scattering amplitude f(#) add up coherently to produce a diffraction pattern of Fraunhofer type.

You may find the following formulas useful.
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(a) A quantum-mechanical system has a time-independent Hamiltonian Ho and an eigenspectrum of states
|n) with energies E,. While in its ground state it is subjected to a time-dependent perturbation V' (t) starting -
at a time ¢ = 0. Derive the first order probability for finding this system in any other of its states at a later

time t.

(b) A one-dimensional harmonic oscillator is initially in its second excited state | 2 >. It is subjected to a

perturbation

1/2
V(t > 0) = ax?exp(—t/7), z= (%) (a+al)

where 7 is positive.
(i) To what states can it make transitions in first order perturbation theory?

(i1) Calculate the corresponding transition probabilities to these states after the perturbation has been

applied for a long time (¢t — o0).



2.5 A one-dimensional wave packet is formed at time ¢ = 0 by a Gaussian superposition of free particle

9\ /4 poo d 2.2
Y(z,0) = (%) /_ —h£ exp( I;LQa - i FLPO):C)

o0

plane waves

(a) Define the position and momentum uncertainties Az and Ap, and calculate them for this wave packet
at time ¢ = 0. Evaluate the quantity AzAp at time t = 0 and determine whether it is less than, greater than

or equal to A/2. Explain the significance of your answer.

(b) The packet is now allowed to propagate in space for a time ¢. Determine Az(t) and Ap(t). Have the
ratios Az(t)/Az(0), Ap(t)/Ap(0), (Az(t)Ap(t))/(Az(0)Ap(0)) increased, decreased, or stayed the same?

Explain this behavior.

2.6

(a) Consider a general ket |¢, m) where £ designates the orbital angular momentum eigenvalue and m its z

component. Consider a specific ket |2,1). Determine for which [¢,m) values the matrix elements
@2,17°16m) (2, 1rrlg,m)

are non-zero, and give their values.

(b) Consider the angular momentum operator L = r x p. Evaluate the commutator [Lg, ay’p} + br?] where

a and b are pure numbers.

(c) In a certain representation the angular momentum operator L is given by:

0 V3 0 0
L _hlv3 0 2 0
T2l 0 2 0 3

0 0 /3 0
What angular momentum £ is associated with this form for L;? What are the eigenvalues of this L7

(d) From the fact that L,]£¢) = 0 construct an explicit form for Y/ (04).



