
Preliminary Exam: Quantum Mechanics, Friday January 18, 2019, 9:00am-1:00pm

Answer a total of any FOUR out of the five questions. For your answers you can use either
the blue books or individual sheets of paper. If you use the blue books, put the solution to
each problem in a separate book. If you use the sheets of paper, use different sets of sheets
for each problem and sequentially number each page of each set. Be sure to put your name on
each book and on each sheet of paper that you submit. If you submit solutions to more than
four problems, only the first four problems as listed on the exam will be graded.
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1. An electric field E(t) (such that E(t) → 0 fast enough as t → −∞) is incident on
a charged (q) harmonic oscillator (ω) in the x direction, which gives rise to an added
“potential energy” V (x, t) = −qxE(t). This whole problem is one-dimensional.

(a) Using first-order time dependent perturbation theory, write down the amplitude cn(t)
for finding the system in excited state n at time t if the system starts in n = 0 at
t = −∞.

(b) Find the expectation value of the momentum of the oscillator as a function of time.

(c) The exact classical solution to the same problem with the initial conditions x = p = 0
at t = −∞ is

p(t) = Re

[∫ t

−∞
dt′ e−iω(t−t

′)qE(t′)

]
.

Compare this with the result of part (b).

2. Take two hermitian operators x̂ and p̂ such that [x̂, p̂] = i~. The spectrum of x̂ is
continuous and we have x̂|x〉 = x|x〉, x ∈ R. Also, the orthonormal basis states are
normalized according to 〈x′|x〉 = δ(x′ − x).

(a) Show that [x̂, p̂n] = i~np̂n−1 holds true for positive integers n, and that
[
x̂, e−i

λp̂
~

]
=

λe−i
λp̂
~ . Henceforth assume that λ ∈ R.

(b) Show that e−i
λp̂
~ |x〉 is an eigenvector of the operator x̂ with the eigenvalue x + λ.

In fact, it is possible to choose the phase factors of the basis states |x〉 so that

e−i
λp̂
~ |x〉 = |x+ λ〉; assume this has been done.

(c) Show that 〈x|p̂|x′〉 = ~
i
δ′(x−x′), proportional to the derivative of the delta function.

Hint: express p̂ as a derivative of e−i
λp̂
~ .

(d) What does the result of part (c) say about momentum operator in position repre-
sentation?



3. A potential barrier V2 of width L is centered around x = 0 between regions with constant
potential V1 for x ≤ −L/2 and V3 for x ≥ L/2 with V3 < V1. The subscripts are used to
consistently label the three regions with different potentials.

V1

V2

V3

−L/2 L/2 x

A particle of mass m is sent in from x = −∞, traveling towards the right with energy E.
The wave-function of the incoming particle is ψin = Aeik1x

(a) What are the wave-functions in the three different regions for E < V2?

(b) What boundary conditions must be satisfied?

(c) Calculate the transmission coefficient of the barrier.

(d) Where is the particle traveling fastest?

(e) What are the effects of an additional barrier of width w and height V2 centered at
x = 3L while the potential at x > 3L + w/2 is the same as V3? Is the presence of
this additional barrier sufficient to permit a bound state and why?

4. Let a, a† be the annihilation and creation operators,

[a; a†] = 1.

Consider a harmonic oscillator which in suitable units takes the form

H = ~ω(a†a+ 1/2) + C(a+ a†)

where C is a real constant.

(a) Compute the ground state energy of H to second order in perturbation theory in C.

(b) Find the exact spectrum of H. (Hint: Define new creation and annihilation operators
b and b†, related to the original a and a† by a constant shift, and notice that this
maps the Hamiltonian to one for which the spectrum is obvious.)

(c) Assuming that a is related to the position operator x and momentum operator p by
a =

√
mω
2~ (x+ ip

mω
), find the ground state wave function of H. Give a physical inter-

pretation of the overall effect that the term proportional to C has on the eigenstates
and the energy spectrum for this system.



5. An elementary spin-1/2 particle with electric charge q and mass m interacts with classical
electromagnetic fields according to the Dirac Hamiltonian H = c~α · ~π+ βmc2 + qΦ where
the operator ~π = ~p− q ~A, with ~A representing the electromagnetic vector potential and Φ
the scalar potential. Explicit forms for the four 4× 4 matrices ~α and β are given below.
In the non-relativistic limit the 4-component Dirac spinor ψ(t, ~x) can be written as two
2-component Pauli spinors, the “large” χ` and “small” χs components:

ψ(t, ~x) =

(
χ`(t, ~x)
χs(t, ~x)

)
e−imc

2t/~.

(a) Show that in the non-relativistic limit χs = 1
2mc

(~σ · ~π)χ`. Use this result to show
that the norm χs is much smaller than the norm of χ` in this limit.

(b) Show that in the non-relativistic limit χ` obeys the so-called Pauli equation:

i~
∂

∂t
χ`(t, ~x) =

(
(~σ · ~π)2

2m
+ qΦ

)
χ`(t, ~x).

(c) Starting from the Pauli equation given in part (b), show that the interaction of
the particle’s spin with the external magnetic field is described by the interaction
Hint = −~µ · ~B. Derive the expression for the magnetic moment operator ~µ.

Remarks: The Dirac matrices αi for i = 1, 2, 3 and β are given in terms of the 2× 2 Pauli
matrices σi and the 2× 2 unit matrix 1 as follows:

αi =

(
0 σi
σi 0

)
, β =

(
1 0
0 −1

)
.

Hint: In the non-relativistic limit it can be assumed that i~ ∂
∂t
χi(t, ~x) is negligible with

respect to mc2χi(t, ~x) for i = `, s and qΦ can be neglected with respect to mc2.


